
Original Paper

Deep Learning–Based Precision Cropping of Eye Regions
in Strabismus Photographs: Algorithm Development and
Validation Study for Workflow Optimization

Dawen Wu1*, Dr med; Yanfei Li2*, MSc; Zeyi Yang1, Dr med; Teng Yin2, MSc; Xiaohang Chen1, Dr; Jingyu Liu2,
MSc; Wenyi Shang2, MSc; Bin Xie1, MSc; Guoyuan Yang1*, Dr med; Haixian Zhang2*, Dr; Longqian Liu1*, DProf,
PhD
1Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
2Machine Intelligence Laboratory, College of Computer Science, Sichuan University, Chengdu, China
*these authors contributed equally

Corresponding Author:
Longqian Liu, DProf, PhD
Department of Ophthalmology, West China Hospital
Sichuan University
37 Guoxue Xiang (Alley)
Chengdu, Sichuan Province, 610041
China
Phone: 86 18980601759
Email: b.q15651@hotmail.com

Abstract
Background: Traditional ocular gaze photograph preprocessing, relying on manual cropping and head tilt correction, is
time-consuming and inconsistent, limiting artificial intelligence (AI) model development and clinical application.
Objective: This study aimed to address these challenges using an advanced preprocessing algorithm to enhance the accuracy,
efficiency, and standardization of eye region cropping for clinical workflows and AI data preprocessing.
Methods: This retrospective and prospective cross-sectional study utilized 5832 images from 648 inpatients and outpatients,
capturing 3 gaze positions under diverse conditions, including obstructions and varying distances. The preprocessing algo-
rithm, based on a rotating bounding box detection framework, was trained and evaluated using precision, recall, and mean
average precision (mAP) at various intersections over union thresholds. A 5-fold cross-validation was performed on an
inpatient dataset, with additional testing on an independent outpatient dataset and an external cross-population dataset of 500
images from the IMDB-WIKI collection, representing diverse ethnicities and ages. Expert validation confirmed alignment
with clinical standards across 96 images (48 images from a Chinese dataset of patients with strabismus and 48 images
from IMDB-WIKI). Gradient-weighted class activation mapping heatmaps were used to assess model interpretability. A
control experiment with 5 optometry specialists compared manual and automated cropping efficiency. Downstream task
validation involved preprocessing 1000 primary gaze photographs using the Dlib toolkit, faster region-based convolutional
neural network (R-CNN; both without head tilt correction), and our model (with correction), evaluating the impact of head tilt
correction via the vision transformer strabismus screening network through 5-fold cross-validation.
Results: The model achieved exceptional performance across datasets: on the 5-fold cross-validation set, it recorded a mean
precision of 1.000 (95% CI 1.000‐1.000), recall of 1.000 (95% CI 1.000‐1.000), mAP50 of 0.995 (95% CI 0.995‐0.995), and
mAP95 of 0.893 (95% CI 0.870‐0.918); on the internal independent test set, precision and recall were 1.000, with mAP50
of 0.995 and mAP95 of 0.801; and on the external cross-population test set, precision and recall were 1.000, with mAP50
of 0.937 and mAP95 of 0.792. The control experiment reduced image preparation time from 10 hours for manual cropping
of 900 photos to 30 seconds with the automated model. Downstream strabismus screening task validation showed our model
(with head tilt correction) achieving an area under the curve of 0.917 (95% CI 0.901‐0.933), surpassing Dlib-toolkit and faster
R-CNN (both without head tilt correction) with an area under the curve of 0.856 (P=.02) and 0.884 (P=.05), respectively.
Heatmaps highlighted core ocular focus, aligning with head tilt directions.
Conclusions: This study delivers an AI-driven platform featuring a preprocessing algorithm that automates eye region
cropping, correcting head tilt variations to improve image quality for AI development and clinical use. Integrated with
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electronic archives and patient-physician interaction, it enhances workflow efficiency, ensures telemedicine privacy, and
supports ophthalmological research and strabismus care.

J Med Internet Res 2025;27:e74402; doi: 10.2196/74402
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Introduction
Strabismus, marked by binocular misalignment, affects 0.8%
to 6.8% [1] of children but can manifest at any age, impacting
visual function, appearance, and social interactions including
romantic relationships, learning, and employment opportu-
nities [2]. Early detection and treatment are crucial, as
they can considerably improve outcomes, underscoring the
importance of timely intervention in managing this disor-
der. Recent initiatives have been directed towards crafting
a dependable artificial intelligence (AI) system for diagnos-
ing strabismus, utilizing ocular alignment photographs [3,4].
These images require isolation of the eye region to exclude
identifiable facial features, ensuring privacy protection and
preparing suitable datasets for further analysis. Historically,
this process has relied on 2 manual and laborious tasks:
cropping photographs and correcting for head tilts to achieve
a horizontal alignment of the eyes [5,6]. This specificity in
image preparation is not only critical for AI model training
but also permeates clinical and academic settings, where there
is a need to share or upload ocular alignment images that
are devoid of any extraneous facial features. The manual
nature of this conversion from full-face to eye-only images
has highlighted the need for an automated, efficient solution
to reduce the workload of medical professionals and health
care costs.

Previous research has explored automating eye region
cropping using algorithms like Dlib-toolkit [7,8] and faster
region-based convolutional neural network (R-CNN) [9],
which depend on facial landmarks and struggle with head
tilt variations, often resulting in inconsistent cropping and

loss of critical image features. This challenge is particularly
significant in AI applications, where head tilt-induced aspect
ratio inconsistencies, when resized to a uniform dimension,
degrade model performance. Consequently, the automati-
cally cropped photos often necessitate manual readjustment,
limiting the practical application of the developed algorithms.

To address this gap, we developed an advanced rotating
bounding box detection algorithm, built upon the YOLOv8
[10] backbone, to automatically crop the eye and periocular
region while correcting for head tilt angles, as illustrated in
Figure 1. Our approach was validated through a comparative
evaluation of preprocessing methods using diverse datasets.
Additionally, prior AI studies for strabismus have often
focused on algorithm development, neglecting patient referral
and long-term management, which can lead to gaps in care
[6]. To address this, we developed an AI-driven management
platform, available as a mobile applet for smartphones and
tablets, integrating digital archives for patient test results and
prescriptions, and a patient-physician interaction module to
facilitate follow-up care, ensuring a seamless experience from
initial assessment to ongoing monitoring.

This study aims to develop and validate an automated
AI model for cropping the eye and periocular region in
photographs of patients with strabismus, correcting for head
tilt variations. By enhancing the efficiency, accuracy, and
standardization of image preprocessing, the model optimizes
clinical workflows, facilitating the construction of electronic
health records. Additionally, the algorithm contributes to the
development of high-quality, standardized datasets, thereby
supporting subsequent downstream AI research.

JOURNAL OF MEDICAL INTERNET RESEARCH Wu et al

https://www.jmir.org/2025/1/e74402 J Med Internet Res 2025 | vol. 27 | e74402 | p. 2
(page number not for citation purposes)

https://doi.org/10.2196/74402
https://www.jmir.org/2025/1/e74402


Figure 1. Workflow overview for intelligent eye region cropping in photographs of patients with strabismus. This workflow overview illustrates the
comprehensive process undertaken in our study for intelligent eye region cropping in photographs of patients with strabismus. Beginning with data
collection from 648 patients, we meticulously annotated eye regions, processed images for uniformity, and developed the model through systematic
training and optimization strategies. Our approach encompasses both technical rigor in model architecture and practical considerations in data
handling, ensuring precise eye region detection across diverse ocular positions. AI: artificial intelligence.
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Methods
Ethical Considerations
This study adhered to the ethical principles outlined in the
Declaration of Helsinki and received approval from the
Ethics Committee of West China Hospital, Sichuan Univer-
sity, China (2023 Review number 1477). Informed consent
was obtained from all participants, and the research com-
plied with local, national, regional, and international laws
and regulations regarding the protection of personal informa-
tion, privacy, and human rights. Additionally, no identifiable
features of research participants are visible in any images
included in the manuscript or supplementary materials.
Data Collection
This retrospective and prospective cross-sectional study
received approval from the Ethics Committee of West China
Hospital, Sichuan University, China (2023 Review num-
ber 1477). Figure 1 delineates the study’s comprehensive
workflow. Data were amassed from 3 distinct datasets to
support model training, validation, and testing across diverse
conditions. The training and validation set (5-fold cross-
validation), derived from inpatients, included photographs
of patients with strabismus across Primary Gaze, Secon-
dary Gaze, and Tertiary Gaze positions, with each patient
contributing 1, 4, and 4 photographs respectively, amounting
to a total of 9 distinct eye positions, showcasing variability
in distances. This dataset, consisting of 5400 ocular gaze
photographs from 600 patients, was stratified and randomly
split into training and validation sets following an 80% to
20% ratio for a 5-fold cross-validation process. These images
were captured from patients both pre- and postsurgery,
admitted to the Department of Ophthalmology at West China
Hospital, China, from January 2018 to October 2023, using a
Canon EOS M50 Mark II single-lens reflex autofocus digital
camera, with a 24-million-pixel resolution and equipped with
a lens-mounted flash. The camera was positioned at a distance
ranging from 33 centimeters to 1 meter from the participants.
The internal independent test set, comprising 432 photographs
from 48 outpatients, was collected from August 1, 2023, to
October 1, 2023, to evaluate the model’s performance under
diverse imaging conditions. Photographs of 12 patients were
captured using the EOS M50 Mark II (Canon Inc), while
the remaining 36 patients’ photographs were taken with the
Huawei (Huawei Inc), OPPO (OPPO Inc) series, and other
leading mobile phone brands. The capturing devices were
positioned at distances ranging from 33 centimeters to 1
meter from the patients.

To address concerns regarding the generalizability of the
model across diverse populations and global clinical settings,
an external cross-population test set was constructed using
the IMDB-WIKI dataset [11], the largest publicly available
face image dataset comprising 523,051 images. From this
dataset, 500 full-face photographs were randomly selected,
representing a wide range of age groups and ethnicities. This
external test set was used to assess the model’s robust-
ness and performance across varied facial features and skin

tones, thereby enhancing the validation of its applicability in
international contexts.

Data Annotation
In this study, we used roLabelImg 3.0 software [12] for
precise eye region annotation in photographs of patients with
strabismus, a necessary step for developing our intelligent
cropping algorithm. This tool allows for the detailed marking
of rotated rectangle regions, crucial for accurately captur-
ing the varied orientations of patients’ heads and eyes. A
senior ophthalmologist and an AI medicine expert from the
Computer Science department collaboratively annotated each
image, with every annotated image subsequently reviewed by
a Veteran Ophthalmologist boasting over 35 years of clinical
and research experience. This ensured the identification of the
eye region with high accuracy. The capability of roLabelImg
to create adjusted bounding boxes for rotations was especially
beneficial for our dataset, which includes photographs where
faces and eyes often deviate from the horizontal. This process
enabled precise annotations, accommodating head tilts and
eyelid positions, which are typical in strabismus cases. These
annotations are critical for training and testing the model,
providing it with a comprehensive understanding of the eye
region’s geometry, and significantly improving its perform-
ance in accurately cropping the eye region from full-face
photographs.

Data Processing
To maintain the original aspect ratio, all images were
resized to 640×640 pixels via letterboxing. Moreover, beyond
using standard data augmentation techniques such as random
stretching, Gaussian blurring, and contrast adjustment, a
crucial enhancement strategy was the implementation of
Mosaic data augmentation. This technique amalgamates 4
distinct images—each from a different patient—into a single
composite by blending their facial features, as illustrated
in Figure S1 in Multimedia Appendix 1. By integrating
the characteristics of 4 patients’ facial photographs, Mosaic
augmentation enables the model to better discern the eye
region as the primary focus, minimizing distractions from
individual facial variations. This approach substantially
broadens the training dataset’s variety, enhances the model’s
generalization ability, and strengthens its capacity to interpret
complex visual environments, thereby improving overall
robustness and performance in diverse conditions.
Model Development and Performance
Evaluation

Model Architecture and Training Process
Considering the model’s speed and efficiency, we adop-
ted YOLOv8 as the backbone. The backbone compo-
nent incorporates the C2f module to improve gradient
flow throughout the network, enabling certain upsampling
operations to be executed with a single CNN layer and
thus simplifying the network architecture. Network pruning
was achieved via sparse training by selectively eliminat-
ing parameters based on their impact on model perform-
ance. For the head section, a decoupled head along with
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an anchor-free mechanism was implemented. This design
segregates bounding box regression and classification into
distinct pathways. Specifically, for this task, which requires
only bounding box regression without the need for classifi-
cation, such architecture minimizes the influence of clas-
sification on detection tasks, thereby boosting detection
efficacy. The model was trained over 300 epochs, using a
linear learning rate schedule with a warmup phase. Stochas-
tic gradient descent served as the optimizer, with a batch
size of 128 and an initial learning rate of 0.01. Further-
more, a foundational weight decay of 0.005 was applied
during training. This comprehensive approach not only
optimizes model performance but also enhances computa-
tional efficiency, supporting streamlined and effective object
detection.

Optimization Strategy
Considering the characteristics of this task, we utilized only
regression loss as the model’s total loss. The regression loss
comprises distribution focal loss (DFL) and ProbIoU loss,
with DFL_Reg_max set to 16 by default. ProbIoU harnesses
the properties of rotated boxes, enhancing the conventional
intersection over union (IOU) calculation by incorporating
angle information, thereby facilitating the computation of
rotated box IOU (refer to Section 4.3 for details). Unlike
modeling a single Dirac distribution for bounding box
coordinates, DFL loss regresses an arbitrary distribution to
model the boundary box. Given the complexity of precisely
defining the boundaries of eye sockets, slightly larger boxes
are considered acceptable. DFL loss allows the network
to focus promptly on values near the labels, maximizing
probability density at the labels and thus constraining the
model’s predictions within an acceptable range. This method
uses the cross-entropy function to optimize probabilities
around the label y, concentrating the network distribution

near the label values. The final overall loss is derived by
combining these 2 components with appropriate weighting.

B1 = 14 a1 + a2 y1 − y2 2 + b1 − b2 x1 − x2 2 + 2 c1 + c2 x2 − x1 y1 − y2a1 + a2 b1 + b2 − c1 + c2 2

B2 = 12 ln a1 + a2 b1 + b2 + c1 + c2 24 a1b1 − c12 a2b2 − c22LProb p, q = 1 − ProbIoU p, q   ∈ 0, 1
LDFL Si, Si + 1 = − yi + 1 − y log Si + y − yi log Si + 1

Ltotal = 0.8*LProb + 0.2*LDFL Si, Si + 1
IOU Calculation for Skewed Rectangles
We implement a method for calculating the skew IOU,
incorporating triangulation. Figure 2 illustrates the geometric
principles. Our objective is to calculate the IOU for each
pair of skew rectangles. Consider rectangle ABCD as the
prediction and rectangle EFGH as the artificially designed,
real rectangle. First, we add the intersection points of the
two rectangles to set P (eg, points I, J, K, and L in Figure
2B), including the vertices of one rectangle located within the
other into set P (eg, points A and C in Figure 2B). Then, we
sort the points in set P to form a convex polygon (eg, polygon
AIJCKL in Figure 2B). Triangulation yields a set of triangles
(shown in Figure 2B as △AIJ, △AJC, △ACK, △AKL). The
polygon’s area is the sum of these triangles’ areas. Finally,
this setup allows us to calculate the IOU using the intersection
to union ratio formula:

IoU = Area IArea rectangleABCD + Area rectangleEFGH − Area I
Figure 2. Geometric principles of skew intersection over union (IOU) calculation using triangulation. This figure depicts the process of skew IOU
calculation through triangulation, illustrating the geometric principles involved. Rectangles ABCD (prediction) and EFGH (real) intersect to form set
P with points I, J, K, and L, and vertices A and C. These points are sorted to create a convex polygon AIJCKL, which is then divided into triangles
△AIJ, △AJC, △ACK, and △AKL for area calculation. This method enables precise IOU measurement by incorporating the angle information of
skew rectangles.

Evaluation Metrics
The trained model’s performance is evaluated using precision
rate, recall rate, and mean average precision (mAP) at
various IOU thresholds. The precision rate measures the
proportion of correctly predicted eye region boxes, while

the recall rate evaluates how well the model identifies all
relevant eye regions. The mAP50 assesses precision at a
50% IOU threshold, and mAP95 averages precision across
IOU thresholds from 50% to 95%, offering a comprehen-
sive measure of model accuracy [13]. The evaluation was
conducted across 3 datasets: the 5-fold cross-validation set,
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comprising 5400 eye position photos, was used to ensure
model robustness through cross-validation, with precision,
recall, and mAP metrics computed for each fold; the internal
independent test set, consisting of 432 eye position photos,
served to validate performance on an independent dataset;
and the external cross-population test set, derived from 500
randomly selected full-face photographs from the IMDB-
WIKI dataset, assessed the model’s generalizability across
diverse age groups, ethnicities, facial features, and skin
tones. The final model was selected based on the best-per-
forming fold from the cross-validation set and subsequently
tested on both the internal independent test set and the
external cross-population test set to evaluate its performance
across the aforementioned metrics. Additionally, an expert
in pediatric and strabismus ophthalmology with 35 years of
clinical and research experience was consulted to evaluate
whether the model’s eye region recognition and cropping
performance meet clinical and research standards (Results
section depicts actual images of eye region recognition and
cropping by the model).

To further validate the model’s efficiency, a control
experiment was conducted in which 5 optometry specialists
each manually cropped and uploaded 81 eye position photos
from 9 patients, with each patient contributing 1 photo in
Primary Gaze, 4 in Secondary Gaze, and 4 in Tertiary Gaze
positions. The average time per patient required by each
physician to crop and upload these photos was recorded and
compared with the average time taken by the model for the
same task. This comparison aims to explore the model’s
potential to reduce image processing time and assess its
suitability for real-time clinical applications.

Model Interpretability Analysis
Grad-CAM (gradient-weighted class activation mapping)
[14] was used to enhance the model’s interpretability. This
technique was utilized to generate heatmaps, visualizing the
regions of interest within full-face photographs.

Downstream Task Validation
To quantitatively evaluate the impact of preprocessing
variations on downstream strabismus screening, we uti-
lized our previously proposed state-of-the-art model (vision
transformer [ViT]) [5] with 1000 first-gaze photographs.
Three preprocessing approaches were compared: Dlib-tool-
kit and faster R-CNN without head tilt correction, and our
developed model with automated head tilt correction. Each
method was applied to preprocess the photographs, followed
by 5-fold cross-validation training and evaluation using the
ViT model. Performance was assessed through Accuracy,
Precision, Specificity, Sensitivity, F1-score, and area under
the curve (AUC) metrics, providing a numerical comparison
of how head tilt correction influences model performance in a
clinical screening context.

Results
Baseline Characteristics of the Study
Participants
In this study, we harnessed a dataset from 648 patients with
5832 images across 3 gaze positions. The demographic and
image attributes of participants within our study’s datasets
are detailed in Table S1 in Multimedia Appendix 1, with
the distributions of ocular alignment angle (Training set:
median 0, range −12.603-5.737; Internal Testing set: median
0, range −5.713-5.737) and eye region bounding box area
(Training set: median 0.134, range 0.022-0.305; Internal
Testing set: median 0.127, range 0.024-0.249) depicted in
Figure S2A,B in Multimedia Appendix 1. These 2 varia-
bles are pivotal in the clinical acquisition of ocular posi-
tion photographs. The ocular alignment angle, measuring the
angle (radians) between the line connecting the eyes’ inner
canthi and the horizontal plane, is particularly significant due
to the frequent occurrence of head tilt in patient images.
This metric enables the model to autonomously correct for
head tilt, ensuring the eyes are aligned horizontally. The
eye region bounding box area, expressed as a percentage,
reflects the eye region’s proportion of the entire image frame,
highlighting the importance of accounting for nonuniform
shooting distances and different device magnifications, which
lead to bounding boxes of the eye region that vary signif-
icantly in size. This aspect of variability highlights our
model’s adaptability and robustness, efficiently navigating the
complexities introduced by diverse photographic conditions
to achieve precise detection outcomes.
Model Performance Evaluation

Quantitative Model Performance and
Responsiveness
The model achieved a mean precision and recall of 1.000
(95% CI 1.000‐1.000), a mAP50 of 0.995 (95% CI 0.995‐
0.995), and a mAP95 of 0.893 (95% CI 0.870‐0.918) across
the 5-fold cross-validation set. The model’s steady conver-
gence during training is visualized in Figure 3. On the internal
independent test set, the model maintained a precision and
recall of 1.000, with a mAP50 of 0.995 and a mAP95 of
0.801. Additionally, on the external cross-population test
set, the model exhibited a precision and recall of 1.000, a
mAP50 of 0.937, and a mAP95 of 0.792, further validating its
performance across diverse populations, as presented in Table
1. Manually cropping and uploading 9 photos per patient took
specialists an average of 6.52 minutes, with a near-normal
time distribution across physicians (Figure S3 in Multimedia
Appendix 1). By contrast, the model completed the task in
just 27 milliseconds per photo, totaling 0.243 seconds for all 9
photos, underscoring its efficiency for real-time clinical use.
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Figure 3. Performance curves on 5-fold cross-validation. This figure demonstrates the model’s performance across 5 validation folds during training.
(A) Precision curves, all approaching 1.0, indicate high accuracy in eye region detection. (B) Recall curves, also nearing 1.0, reflecting robust
identification of true positives. (C) mAP50, confirming the model’s precision across all folds. (D) mAP95, depicting consistent improvement at
stricter intersections over union thresholds. mAP: mean average precision.

Table 1. Model performance across validation and test sets.
Dataset Precision Recall mAP50a mAP95b

5-fold cross-validation set, mean (95% CI) 1.000 (1.000-1.000) 1.000 (1.000-1.000) 0.995 (0.995-0.995) 0.893 (0.870-0.918)
Internal independent test set 1.000 1.000 0.995 0.801
External cross-population test set 1.000 1.000 0.937 0.792

amAP50: mean average precision at 50% intersection over union threshold.
bmAP95: mean average precision averaged over intersection over union thresholds from 0.5 to 0.95.

Qualitative Expert Validation
The model’s eye region detection and cropping were
qualitatively assessed by a pediatric and strabismus ophthal-
mology expert with over 35 years of experience, assessing 96
images comprising 48 images of randomly selected photo-
graphs from a Chinese dataset of patients with strabismus
and 48 images from the IMDB-WIKI dataset, as depicted
in Figure S4 in Multimedia Appendix 1. These images span

diverse ages, skin tones, ethnicities, and distances, includ-
ing obstructions such as fingers and cotton swabs. The
expert review affirmed the model’s precision and high-quality
outcomes across these 2 varied datasets. Figure 4 showcases
examples of head tilt correction and ocular region cropping
for 2 patients. Such detailed evaluation confirms the model’s
adherence to clinical and research standards, showcasing its
capability in accurate eye region recognition and cropping.
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Figure 4. Head tilt correction, ocular region cropping, and heatmap visualization in images of patients with strabismus. This figure illustrates
the model’s processes across 2 photographs of patients with strabismus, with gradient-weighted class activation mapping heatmaps revealing that
detection, cropping, and head tilt correction are primarily achieved by focusing on the core ocular regions of full-face images. (A) The ocular
alignment angle is 0.457° and the eye region bounding box area is 0.054. (B) The ocular alignment angle is 2.382° and the eye region bounding box
area is 0.171. The model isolates the eye region, adjusts image orientation for horizontal alignment, and offers user-adjustable cropping boundaries to
accommodate varying clinical needs and enhance flexibility.

Interpretability Analysis Using Grad-CAM
Heatmaps
Building on the expert validation, Grad-CAM heatmaps
were used to further elucidate the model’s decision-making
transparency, as depicted in Figure 4. The heatmaps in Figure
4A and 4B reveal that the model predominantly concentrates
on the core ocular regions of the full-face images, with
warmer colors indicating higher attention to these areas. The
highlighted regions’ tilt direction aligns with the patient’s
head tilt, demonstrating that the model primarily performs
target detection by focusing on the core ocular regions and
accurately learns the head tilt angle information.

Impact of Cropping Methods on Downstream
Strabismus Screening
The strabismus screening model (ViT) was evaluated using
1000 primary gaze photographs preprocessed with 3 cropping
methods: Dlib-toolkit and faster R-CNN (both without head
tilt correction) and our model (with head tilt correction).
As shown in Table 2, our model outperformed the others,
achieving an AUC of 0.917 (95% CI 0.901‐0.933), compared
with 0.856 (95% CI 0.837‐0.875, P=.02) for Dlib-toolkit and
0.884 (95% CI 0.866‐0.902, P=.05) for faster R-CNN.

Table 2. Comparison of cropping methods on strabismus screening model (vision transformer [ViT]) performance. This table presents the
performance of the strabismus screening model (ViT) based on 1000 primary gaze photographs, cropped using Dlib-toolkit, faster region-based
convolutional neural network (R-CNN; both uncorrected for head tilt), and our model (corrected for head tilt), evaluated via 5-fold cross-validation.
The P values, calculated using a paired t test, compare the area under the curve (AUC) of each method with that of our model, with P<.05 indicating
statistical significance.

Cropping
method

Accuracy, mean
(95% CI)

Precision, mean
(95% CI)

Specificity, mean
(95% CI)

Sensitivity, mean
(95% CI)

F1-score, mean
(95% CI)

AUC, mean (95%
CI)

P value
(AUC
vs our
model)

Dlib-toolkit
(uncorrected)

0.872
(0.853-0.891)

0.849
(0.829-0.869)

0.863
(0.842-0.884)

0.834
(0.811-0.857)

0.841
(0.820-0.862)

0.856
(0.837-0.875)

.02

Faster R-
CNN
(uncorrected)

0.896
(0.879-0.913)

0.875
(0.857-0.893)

0.882
(0.863-0.901)

0.861
(0.839-0.883)

0.868
(0.849-0.887)

0.884
(0.866-0.902)

.046

Our model
(corrected)

0.921
(0.905-0.937)

0.904
(0.887-0.921)

0.912
(0.895-0.929)

0.895
(0.877-0.913)

0.899
(0.882-0.916)

0.917
(0.901-0.933)

—a

aNot available.
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AI-Driven Management Platform
The AI-driven management platform developed in this study
not only enhances the precision of strabismus eye region

cropping but also integrates functionalities that improve
overall patient care (as shown in Figure 5).

Figure 5. The interface of the artificial intelligence-driven management platform for the care of patients with strabismus. (A) Depicts the digital
medical records interface, where patients and health care providers can access and manage comprehensive patient histories, including diagnoses,
prescriptions, and eye examination results. (B) Depicts the doctor-patient interaction module, allowing seamless communication through text, images,
and video, facilitating effective consultation and follow-up care.

Patient 9-Position Ocular Gaze Upload and
Information Collection
The platform collects 9-position ocular gaze photographs.
These photographs are captured by an ophthalmologist in
a clinical setting, ensuring the accuracy and consistency
of the data. To address potential failures or low-confi-
dence scenarios, the system incorporates a dual-layer quality
assurance process: premodel image quality checks and
postmodel detection validation. Uploaded photos must have
a minimum resolution of 5 megapixels. If this requirement
is not met, the system immediately alerts the user to the
inadequate resolution and requests a replacement image.
Furthermore, if the detection algorithm finds that the eye
region constitutes less than 2.5% or more than 25% of
the total photo area—suggesting that the shooting distance
deviates from the ideal range of 33 cm to 1 m—the sys-
tem informs the user that the distance is either “too far”
or “too close,” respectively, and prompts a repositioning
adjustment. Post detection, if the model’s confidence score,
reflecting its certainty in identifying the eye region, falls
below 50%, the image is flagged as unreliable, potentially
due to occlusion, motion blur, or poor lighting conditions.
Users are then instructed to retake and upload a clearer
image to ensure accurate detection. In addition, essential
patient data, including name, gender, date of birth, UCVA,
refractive data, axial length, angle of deviation, and binocular

vision function test results—previously recorded on paper—
are digitally stored. This process is guided and assisted by the
attending physician, ensuring that all examination results are
accurately uploaded, thus creating a comprehensive patient
profile.

Digital Medical Records
A secure digital record system allows for easy access to
patients’ diagnostic results and prescriptions. Both patients
and health care providers can retrieve and review these
records, ensuring that clinical decisions are based on up-to-
date information. This feature also supports the integration
of historical data, promoting continuity of care and aiding
in both treatment progress tracking and informed clinical
decision-making.

Patient-Physician Interaction Module
The platform includes an interactive module that allows
seamless communication between patients and health care
providers. This module facilitates consultation, sharing of
symptoms, and response to inquiries, reducing the likeli-
hood of missed follow-ups. Communication through text,
images, and videos further improves the consultation process,
providing personalized and efficient care.
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Discussion
This study developed and validated an automated AI model
for cropping the eye and periocular region in photographs
of patients with strabismus, demonstrating its efficacy across
diverse datasets. The model achieved near-perfect precision
and recall (1.000) on both the 5-fold cross-validation set
(mAP50: 0.995, mAP95: 0.893) and internal independent test
set (mAP50: 0.995, mAP95: 0.801), with robust perform-
ance on the external cross-population test set (mAP50:
0.937, mAP95: 0.792), confirming its generalizability across
varied ethnicities and ages. Expert validation on 96 diverse
images affirmed its precision, while Grad-CAM heatmaps
revealed focused attention on core ocular regions, aligning
with head tilt angles. Downstream evaluation using the ViT
model showed superior performance with head tilt correction
(AUC 0.917) compared with Dlib-toolkit (AUC 0.856) and
faster R-CNN (AUC 0.884), highlighting the model’s clinical
efficiency by reducing cropping time from 6.52 minutes to
0.243 seconds per patient.

Strabismus screening, traditionally manual and reliant
on physician expertise, demands significant patient-doctor
cooperation, often resulting in subjective outcomes. Recent
efforts focus on developing AI systems using photographs
for quicker, more objective diagnoses [5,6]. However, the
advancement of strabismus screening AI has been signifi-
cantly impeded by the laborious and prone-to-error task
of manually cropping photographs to determine ocular

alignment, particularly when correcting for head tilts in
full-face images to achieve horizontal eye alignment. In
clinical environments, such as outpatient clinics, there exists
a parallel demand for an algorithm that enables clinicians
to rapidly crop full-face photographs to isolate the eye
region for inclusion in electronic health records, thereby
preserving patient privacy and enhancing the quality of
diagnostic imaging. This requirement is echoed in academic
and telemedicine contexts, where the accuracy and precise
alignment of eye region images are paramount. It is crucial to
address these longstanding challenges by leveraging advanced
technological solutions.

The previously proposed automatic eye region cropping
algorithm was primarily based on the Dlib-toolkit facial
feature point recognition function [7,8,15]. This function
utilizes a facial feature point detector to extract 68 facial
landmarks (as shown in Figure 6A) and locates the eye
region based on the detected facial positional information for
cropping. However, this method relies on additional facial
landmarks to identify eye region markers, which becomes
problematic in clinical settings where patients often wear
masks, only the upper half of the face is photographed for
clarity, or fingers and cotton swabs obstruct the extraction of
facial landmarks during eyelid retraction. For such photos, the
eye region cropping algorithm developed with the Dlib-tool-
kit facial feature point recognition function fails to operate.
Furthermore, as the Dlib-toolkit function is encapsulated
within the Pytorch platform, it cannot be modified.

Figure 6. Comparative evaluation of eye region cropping algorithms from full-face patient photographs. This compares eye region cropping
algorithms applied to cartoon-style full-face photographs, derived from the author’s own images, to reflect the universal applicability of these
methods—even for cartoon characters. (A) The eye region cropping using the Dlib-toolkit facial feature point recognition function, which extracts 68
facial landmarks to identify and crop the eye region. The effectiveness of this method is contingent on the visibility of facial landmarks, which can be
hindered by obstructions such as masks, fingers, or cotton swabs during eyelid retraction. (B) The application of the faster R-CNN object detection
algorithm for eye region cropping. This method generates region proposals followed by classification and refinement, but it can be challenged by the
misalignment of eyes and the variability in the aspect ratio of cropped images, often necessitating manual adjustments post cropping. (C) The results
of our proprietary algorithm for eye region cropping are specifically designed to address head tilts and ensure horizontal alignment of the eyes. This
innovative approach automates the cropping process while maintaining the original features of the eye region, reflecting significant improvements
over prior methods. R-CNN: region-based convolutional neural network.

Using object detection algorithms presents an alternative
approach for cropping the eye region in full-face photographs.
Presently, object detection algorithms are divided into 2
principal methodologies: two-stage and one-stage detection.
Two-stage detectors, such as faster R-CNN [9], R-FCN [16],

and Mask R-CNN [17], initiate by generating a multitude
of region proposals within images, which are then classified
and refined. This sequential process underpins the nomen-
clature of two-stage detection. There have been attempts
to automate eye region cropping using the faster R-CNN
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object detection algorithm [18], with the results shown in
Figure 6.B. However, this algorithm faces challenges such
as misalignment of the eyes on the same horizontal plane
affecting diagnostic accuracy and variation in the aspect ratio
of cropped images due to patient head tilt, resulting in loss
of original features when resized for model input. Conse-
quently, images often require manual readjustment follow-
ing automated cropping by the algorithm to rectify these
discrepancies.

One-stage detectors, such as YOLO [19], SSD [20], and
M2Det [21], streamline object detection by directly predicting
categories and locations in a single step, bypassing proposal
box generation. This efficiency renders them faster and
more suitable for real-time tasks with limited computational
resources than their two-stage counterparts. Within the array
of one-stage detectors, the YOLO architecture distinguishes
itself by striking an optimal balance between speed and
precision, facilitating swift and dependable object recogni-
tion within images. Specifically, in medical applications,
YOLO’s application spans cancer detection [22], skin lesion
segmentation [23], and pill identification [24], contributing
to heightened diagnostic accuracy and streamlined treatment
protocols [13].

Our study developed a novel ocular gaze photograph
preprocessing algorithm tailored for automated cropping of
the eye and periocular region in full-face photographs of
patients with strabismus. This algorithm effectively accounts
for head tilt angles by initially cropping the full-face image
to isolate the eye region and then realigning it to ensure
horizontal eye alignment, handling tilt angles up to 5.74
radians, enhancing its robustness and utility in clinical and
telemedicine settings where precise eye region identification
is essential. The model demonstrated outstanding perform-
ance across 3 datasets: on the 5-fold cross-validation set,
it achieved a precision and recall of 1.000, with a mAP50
of 0.995 and mAP95 of 0.893; on the internal independ-
ent test set, it maintained a precision and recall of 1.000,
with a mAP50 of 0.995 and mAP95 of 0.801; and on the
external cross-population test set, it exhibited a precision
and recall of 1.000, a mAP50 of 0.937, and a mAP95 of
0.792, confirming its generalizability across diverse ethnici-
ties and ages. Additionally, Grad-CAM heatmaps revealed
that the model primarily focuses on the core ocular regions
in full-face images, with the highlighted regions’ tilt direction
aligning with the patient’s head tilt, indicating that the model
performs target detection by concentrating on these areas
and accurately learns head tilt angle information, enhanc-
ing its decision-making transparency. In a clinical setting,
manually cropping and adjusting 900 eye position photos
from 100 patients would take a physician approximately
10 hours—a process prone to human error and inconsisten-
cies in aspect ratios. Our model completes this task in
under 30 seconds, significantly improving the accuracy and
efficiency of image preparation for downstream strabismus-
related applications. Furthermore, prior research noted that
head tilt variations result in inconsistent aspect ratios in
cropped images, which, when resized to a uniform dimension
for model input, lead to the loss of original image features and

degraded performance [5,6]. Despite these challenges, earlier
studies lacked quantitative evidence on the impact of head
tilt correction. To address this gap, we conducted down-
stream task validation by preprocessing 1000 primary gaze
photographs with 3 methods—Dlib-toolkit and faster R-CNN
(both without head tilt correction) and our model (with head
tilt correction)—and evaluated them using the ViT model
through 5-fold cross-validation. Our model achieved an AUC
of 0.917 (95% CI 0.901‐0.933), outperforming Dlib-toolkit
(AUC 0.856, 95% CI 0.837‐0.875, P=.02) and faster R-CNN
(AUC 0.884, 95% CI 0.866‐0.902, P=.05), with P values
(<.05) confirming statistical significance. This improvement
stems from head tilt correction, which mitigates the issue of
inconsistent aspect ratios caused by varying head tilt angles,
preserving original image features during resizing for model
input and thereby enhancing the ViT model’s performance
in strabismus-related applications. Additionally, the model
offers a user-adjustable cropping boundary, allowing the
inclusion of surrounding areas based on user preference,
thereby enhancing its flexibility to meet diverse clinical
needs.

Currently, many clinical records for patients with
strabismus are still maintained in paper format, leading to
issues with the nondigital and unstructured collection and
annotation of data. These challenges result in incomplete
or inaccurate multimodal medical data, which limits the
broader application and development of AI research in this
field [3,6]. Digital products in strabismus care remain scarce,
and previous AI-driven screening and diagnostic efforts
have typically only focused on delivering diagnostic results,
lacking support for patient referrals and long-term follow-
up. This gap often leads to missed follow-up visits, hinder-
ing comprehensive treatment and obstructing the collection
of diverse, multimodal, and longitudinal data from patients
[6]. Our platform integrates electronic archives to create a
secure and efficient system for storing patient test results
and prescriptions. This integration allows for comprehensive
and accurate tracking of patient histories, enabling informed
clinical decision-making. Additionally, the platform enhances
patient management by preventing missed appointments
and ensuring timely treatment. By leveraging advanced
data management tools, it facilitates large-scale population
data collection, which in turn supports improved interven-
tion strategies and prognosis predictions. This innovation
represents a major step forward in strabismus management,
with the potential to significantly improve patient outcomes
and optimize the delivery of eye care services. Given the
absence of similar intelligent products previously, this study
introduces an AI platform framework, which still lacks formal
usability testing, user feedback, or satisfaction assessments,
and awaits future real-world multicenter studies to explore its
usability and health economic benefits for patient manage-
ment.

In summary, this study presents a novel approach
in ophthalmology, developing an advanced ocular gaze
photograph preprocessing algorithm for precise eye region
cropping in patients with strabismus. By automating a
traditionally manual and error-prone process, our method
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significantly improves the accuracy and efficiency of
image preparation for downstream applications and AI
model development, thereby enhancing clinical workflows.
Additionally, we developed a comprehensive AI-driven

management platform, which integrates digital archives and
patient-physician interaction modules, further optimizing
patient care from initial assessment through to long-term
follow-up.
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