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Abstract

Background: Longitudinal tracking of multiple sclerosis (MS) symptoms in an individual’s environment may improve
self-monitoring and clinical management for people with MS. Conventional symptom tracking methods rely on self-reports and
clinical visits, which can be infrequent, subjective, and burdensome. Digital phenotyping using passively collected sensor data
from smartphones and fitness trackers offers a promising alternative for continuous, real-time symptom monitoring with minimal
patient burden.

Objective: We aimed to develop and evaluate a machine learning (ML)–based digital phenotyping approach to monitor the
severity of clinically-relevant MS symptoms. We used passive sensing data to predict short-term fluctuations in patient-reported
symptoms, including depressive symptoms, global MS symptom burden, severe fatigue, and poor sleep quality. Further, we
examined the impact of incorporating behavioral context features and ecological momentary assessments on prediction performance.

Methods: We conducted a 12- to 24-week longitudinal study involving 104 people with MS, collecting passive sensor and
behavioral health data. Smartphone sensors recorded call activity, location, and screen use, while fitness trackers captured heart
rate, sleep patterns, and step count. We extracted patient-level behavioral features and categorized them into 2 feature sets: one
from the prediction period (called action) and one from the preceding period (called context). Using an ML pipeline based on
support vector machines and AdaBoost, we evaluated the predictive performance of sensor-based models, both with and without
ecological momentary assessment inputs.

Results: Between November 16, 2019, and January 24, 2021, overall, 104 people with MS (women: n=88, 84.6%; non-Hispanic
White: n=97, 93.3%; mean age 44, SD 11.8 years) from a clinic-based cohort completed 12 weeks of data collection, including
a subset of 44 participants (women: n=39, 89%; non-Hispanic White: n=42, 95%; mean age 45.7, SD 11.2 years) who completed
24 weeks of data collection. In total, we collected approximately 12,500 days of passive sensor and behavioral health data from
the participants. Among the best-performing models with the least sensor data requirement, the ML algorithm predicted depressive
symptoms with an accuracy of 80.6% (F1-score=0.76), high global MS symptom burden with an accuracy of 77.3% (F1-score=0.78),
severe fatigue with an accuracy of 73.8% (F1-score=0.74), and poor sleep quality with an accuracy of 72.0% (F1-score=0.70).
Further, sensor data were largely sufficient for predicting symptom severity, while the prediction of depressive symptoms benefited
from minimal active patient input in the form of responses to 2 brief questions on the day before the prediction point.
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Conclusions: Our digital phenotyping approach using passive sensors on smartphones and fitness trackers may help patients
with real-world, continuous self-monitoring of common symptoms in their own environment and assist clinicians with better
triage of patient needs for timely interventions in MS and potentially other chronic neurological disorders.

(J Med Internet Res 2025;27:e70871) doi: 10.2196/70871
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Introduction

Multiple sclerosis (MS) is a leading cause of chronic
neurological disability, affecting around 2.8 million people
worldwide and >700,000 people in the United States, while
causing high health and socioeconomic burdens [1-3]. People
with MS may experience a variety of neurological symptoms
involving the cognitive, motor, sensory, vision, bowel, or
bladder domains, as well as symptoms of depression, fatigue,
and sleep disturbance in their daily lives [4]. Comprehensive
MS care involves timely symptom management, but clinicians’
awareness of symptoms often lags patient experience. Frequent
symptom monitoring could improve clinical care and quality
of life. However, active engagement with frequent longitudinal
symptom monitoring is impractical for patients or clinicians.
Given the pervasiveness of MS-related symptoms, symptom
monitoring in the patient’s own environment coupled with
effective prediction of symptom severity could facilitate triage
for timely clinical intervention and reduce the delay in symptom
management before worsening.

The digital phenotyping framework uses passively collected
data from personal digital devices (eg, smartphones and fitness
trackers) to quantify human behavior moment-by-moment in
situ and predict individual health outcomes [5]. Previous works
using passively sensed smartphone and wearable data to predict
MS outcomes explored the feasibility of passive data collection
and the preliminary association between sensed behaviors and
standard rater-assessed clinical outcomes [6-14]. However, little
is known regarding the clinical applicability of continuous
longitudinal digital phenotyping to predict the severity of
clinically relevant patient-reported symptoms in people with
MS. Here, we proposed a machine learning (ML) approach that
harnesses continuously and passively collected data from
patients’ digital devices to predict short-term future symptoms.
Specifically, we prioritized common MS neurological symptoms
as well as symptoms of depression, fatigue, and sleep
disturbance that collectively worsen the quality of life.

In this study, we used the concepts of action features and context
features to better capture more recent versus less recent
behaviors to be modeled. Action features represent a patient’s
behaviors during the period immediately preceding a symptom
assessment (eg, the preceding 2 or 4 weeks), while context
features capture behaviors from an earlier period, providing a
historical context for interpreting or contextualizing the patient’s
more recent behavioral patterns. We also asked patients to
complete brief self-reports of their instantaneous symptoms and
experiences multiple times a day, to which we refer as ecological
momentary assessments (EMAs) that provide additional

snapshots of real-time symptoms to complement the passively
collected sensor data.

The primary study goal was to test the feasibility of low-cost,
continuous, and longitudinal symptom tracking in a patient’s
own environment with minimal active patient engagement.
Secondarily, we examined whether ML model performance
based on passively collected sensor data would improve when
(1) using behavioral features from the previous period (context
features) to help the models contextualize the patient’s current
behaviors in addition to behavioral features from the current
period (action features), and (2) incorporating minimal active
patient input via EMAs. These aspects of the study design in
digital phenotyping of clinically relevant patient-reported
symptoms differentiate from prior studies. Our approach may
also inform the real-world application of long-term, continuous
symptom tracking and real-world clinical prediction in chronic
neurological conditions beyond MS. Integrating this digital
health approach into routine clinical practice could enable more
individualized disease monitoring, support clinical
decision-making through real-time, data-driven insights, and
improve quality of life. Using MS as an illustration of the
potential clinical application of digital phenotyping in a chronic
neurological disorder with multifaceted symptomatic
manifestations, this study provides proof-of-concept that the
broader adoption of wearable and smartphone-based monitoring
systems in routine clinical practice could enhance symptomatic
management in other complex chronic neurological disorders.

Methods

Participants and Study Period
The study included adults aged ≥18 years with a
neurologist-confirmed MS diagnosis who owned a smartphone
(Android or iOS) and enrolled in the Prospective Investigation
of Multiple Sclerosis in the Three Rivers Region study, a
clinic-based MS natural history cohort at the University of
Pittsburgh [15-22].

Between November 16, 2019, and January 24, 2021, a total of
104 participants completed the data collection for a predefined
period of 12 weeks, while 44 (42.3%) participants extended
data collection for an additional 12 weeks to complete 24 weeks
of data collection. None of the participants experienced acute
relapses during the study period.

Ethical Considerations
The institutional review boards of the University of Pittsburgh
(STUDY19080007) and Carnegie Mellon University
(STUDY2019-00000037) approved the study. All participants
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provided written informed consent. To protect confidentiality,
we removed identifiable information (eg, names and contact
information) from sensor and questionnaire data before analysis.

Overview of the Digital Phenotyping Approach
To briefly summarize the overall approach, we used passively
and continuously collected data from participants’ own digital
devices, including 3 smartphone sensors (calls, locations, and
screen use) and 3 fitness tracker sensors (heart rate, sleep, and
steps), to predict short-term future patient-reported symptoms
of MS-related global neurological symptom burden, depression,
fatigue, and sleep quality. To assess the added predictive utility
of EMAs, which were brief surveys for “repeated sampling of
participants’ current behaviors and experiences in real time in
participants’ natural environments” [23,24], we administered
EMAs 3 times per day through a mobile app asking 2 5-point
Likert scale questions that took <15 seconds on average to
respond. To capture the real-world fluctuation in symptom
severity, we divided each participant’s collected data into
discrete consecutive periods (eg, 2 or 4 weeks) for rolling
predictions of patient-reported symptoms. We used participants’
responses to validated symptom questionnaires during the same
period as the ground truth of symptom severity. We computed
features from the sensor and EMA data and classified features
as action versus context based on the temporal relationship
between features and patient-reported symptom severity at each
period. Action features captured a person’s activity and
behaviors during the period immediately preceding the next
point of symptom severity prediction. Context features captured
a person’s activity and behaviors during the period immediately
preceding the previous prediction point, that is, the context of
a participant’s action features. We then used (1) action features
or (2) action and context features to predict symptom severity.

Sensor and EMA Data Collection
At enrollment, the study team helped each participant install a
custom-built mobile app on their smartphone. In parallel, the
study team provided each participant with a Fitbit Inspire HR
device to wear. Participants kept the Fitbit after study
completion. We asked participants to always carry their
smartphones, wear fitness trackers, and keep their devices
charged.

The mobile app was based on the AWARE framework [25],
and provided the backend and network infrastructure for
unobtrusively collecting call logs (eg, incoming, outgoing, and
missed calls), locations, and screen use (ie, when the screen
status changed to on or off and locked or unlocked) of the
smartphone sensors. The fitness tracker sensors captured heart
rate, sleep status (eg, asleep, awake, restless, or unknown), and
the number of steps. Data from AWARE were deidentified and
automatically transferred over Wi-Fi to a study server at regular
intervals. Data from the Fitbit were retrieved using the Fitbit
application programming interface at the end of each
participant’s data collection.

Calls and screen use were event-based sensor streams, whereas
location, heart rate, sleep, and steps were time series sensor
streams. We sampled location coordinates at 1 sample per 10
minutes and heart rate, sleep, and steps at 1 sample per minute.

Throughout the study duration, the mobile app alerted and
directed participants 3 times a day to complete a brief EMA
survey within the app. EMA surveys took <15 seconds to
complete on average. The 2 recurring questions were as follows:
(1) “How depressed do you feel?” and (2) “How tired do you
feel?” Participants responded to each EMA question using a
Likert scale from 0 to 4, with 0 indicating the least and 4
indicating the most depressed or tired feeling. The EMA
responses were transmitted to the study server.

Questionnaire Deployment for Assessing Symptom
Severity

Overview
Participants completed web-based questionnaires using the
secure Research Electronic Data Capture system [26,27]. To
assess the severity of clinically relevant symptoms, we used
standardized patient-reported outcome questionnaires validated
in people with MS. To harmonize the periods across participants,
all participants completed a baseline questionnaire assessing
demographics and clinical profiles on the Saturday following
enrollment. Beyond the baseline, participants completed
additional questionnaires at regular intervals (eg, every 2 or 4
weeks from the first Saturday) as appropriate for assessing each
standard patient-reported symptom type throughout the data
collection period.

Depressive Symptoms
To measure the severity of depression symptoms, participants
completed the Patient Health Questionnaire-9 (PHQ-9) once
every 2 weeks [28]. The PHQ-9 asked for symptoms in the
preceding 2 weeks, whereas the other questionnaires in this
study asked for symptoms in the preceding 4 weeks. PHQ-9
scores ranged from 0 to 3, with higher scores indicating more
severe depressive symptoms.

Global MS Neurological Symptom Burden
To measure the severity of the global MS-related neurological
symptom burden, participants completed the Multiple Sclerosis
Rating Scale-Revised (MSRS-R) once every 4 weeks [29].
MSRS-R assessed 8 neurological domains (ie, walking, upper
limb function, vision, speech, swallowing, cognition, sensory,
bladder, and bowel function). Each domain could score from 0
to 4, with 0 indicating the absence of symptoms and 4 indicating
the greatest symptom severity. The total score (0-32) indicates
the global MS-related neurological symptom burden.

Fatigue Impact
To measure the severity of fatigue, participants completed the
Modified Fatigue Impact Scale-5 (MFIS-5) once every 4
weeks [30]. MFIS-5 assessed the impact of fatigue on cognitive,
physical, and psychosocial function. Each item in MFIS-5 could
score from 0 (never) to 4 (almost always) on a 5-point Likert
scale, with higher scores indicating more severe fatigue.

Sleep Quality
To measure the severity of sleep disturbances, participants
completed the Pittsburgh Sleep Quality Index (PSQI) once every
4 weeks [31]. The 19 items of PSQI generated 7 component
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scores (each on a 0-3 scale) and one composite score (0-21),
with higher scores indicating poorer sleep quality.

Binary indicators of symptom severity likely have more practical
real-world clinical utility in assisting patient self-monitoring
and facilitating clinician triage for symptom intervention. For
each symptom type, we dichotomized the score to the respective
standardized questionnaire using specific thresholds to classify
symptom severity. For global MS neurological symptom burden,
we dichotomized MSRS-R scores as ≥6.4 (higher burden) versus
<6.4 (lower burden). For depressive symptoms, we dichotomized
PHQ-9 scores as ≥5 (presence of depressive symptoms) versus
<5 (absence of depressive symptoms). For fatigue, we
dichotomized MSIF-5 scores as ≥8 (greater fatigue) versus <8
(lower fatigue). For sleep quality, we dichotomized PSQI scores
as ≥9 (poorer sleep quality) and <9 (better sleep quality). For
depressive symptoms and sleep quality, the binary thresholds
were based on previous consensus [28,32]. For global MS
neurological symptom burden and fatigue, we calculated the
respective median scores in the entire dataset. We used the
median scores as the thresholds, given the lack of consensus
from the literature. Thus, throughout the data collection, each

participant had a consecutive series of binary symptom severity
status (ie, every 2 weeks for depressive symptoms and every 4
weeks for global MS symptom burden, fatigue, and sleep
quality).

ML Modeling

Overview
Briefly, the data processing and analysis pipeline required the
following steps (Figure 1). First, we extracted features from
sensor and EMA data to generate action and context features.
Second, we improved data quality by handling missing features.
Finally, we implemented an ML pipeline to predict the severity
of each patient-reported symptom on a rolling basis (ie, every
2 weeks for depressive symptoms and every 4 weeks for global
MS neurological symptom burden, fatigue, and sleep quality)
using action features or action and context features in the
following iterations: (1) 1-sensor models, each containing
features from one out of the 6 sensor types; (2) the best
combination of the 1-sensor models; (3) the best combination
of 1-sensor models plus EMA.
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Figure 1. Data processing and analysis pipeline. The pipeline for predicting depressive symptoms (Patient Health Questionnaire-9) every 2 weeks, and
global multiple sclerosis neurological symptom burden (Multiple Sclerosis Rating Scale-Revised), fatigue (Modified Fatigue Impact Scale-5), and sleep
quality (Pittsburgh Sleep Quality Index) every 4 weeks, used passively collected sensor data from smartphones and fitness trackers as well as ecological
momentary assessments (EMAs). We ran the pipeline for 2 types of EMA features (average and presurvey EMAs) and 2 types of feature matrices (action
and action and context). For each sensor, every feature was extracted from 15 temporal slices over 2- or 4-week periods. First, raw data from the device
sensor were preprocessed and filtered by time-of-the-day and days-of-the-week. Features were then extracted from the selected raw data. For EMA, we
used a similar approach (as for processing sensor data) to calculate the average EMA and presurvey EMA. Action features were features from the period
immediately preceding the prediction point, whereas context features were from the period preceding the “action period”.
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Feature Extraction and Engineering

Overview

From the smartphone and fitness tracker sensors, we computed
6 types of features from different sensors (ie, calls, heart rate,
location, screen use, sleep, and steps), given their known
potential to inform behaviors relevant to symptoms of
depression [33-38], fatigue [10], poor sleep quality [39,40], and
crucial MS neurological symptoms, such as decreased mobility
[13]. The “calls” feature captured communication patterns. The
“heart rate” and “steps” features captured the extent of physical
activity. The “location” feature captured mobility patterns. The
“screen use” feature potentially captured the ability for
concentration [41,42] and the extent of sedentary behavior [43]
with caveats for people with MS and people with other chronic
neurological disorders who may experience impairment with
upper limb or fine motor functions. The “sleep” feature captured
sleep duration and patterns, from which we could infer sleep
disturbance (eg, insomnia or hypersomnia) [44]. Multimedia
Appendix 1 (section A.1) provides details of sensor feature
extraction and engineering. For sensor features over time periods
(eg, every 2-week or 4-week period; Figure 1), we calculated
the daily average value of each sensor feature. Given the
diversity of behaviors with ephemeral and sustained changes
in people with MS, it is crucial to initialize the model with a
large feature set. While these features captured individual or
overlapping behaviors, the feature selection stage of our ML
pipeline removed redundant features.

For EMA responses during the same time periods (eg, every
2-week or 4-week period; Figure 1), we obtained 2 types of
EMA features. The “average EMA” was the daily average value
of each EMA question response during a given period. The
“presurvey EMA” represented the value of the last response to
each EMA question on the day before the administration of the
questionnaire for assessing the patient-reported symptom during
each period.

Temporal Slicing

The temporal slicing approach extracted sensor features from
different time segments (Figure 1). From previous research,
temporal slicing better defined the relationship between a sensor
feature and depression severity [45,46]. Here, we collected all
available data during each specific epoch or time segment of
the day (all day; night, midnight-6 AM; morning, 6 AM-noon;
afternoon, noon-6 PM; and evening, 6 PM-midnight) and on
specific days of the week (all days of the week, weekdays only
[Monday-Friday], and weekends only [Saturday-Sunday]) to
achieve 15 data streams or temporal slices. For sensor or EMA
features in each of the 15 temporal slices, we first computed
daily features (of the temporal slice) and averaged daily features
over either 2- or 4-week periods for prediction (ie, every 2 weeks
to predict depressive symptoms and every 4 weeks to predict
global MS neurological symptom burden, fatigue, and sleep
quality). We concatenated the features from 15 temporal slices
to derive the final feature matrix. We selected these slicing
intervals based on circadian rhythms and established practice
in passive sensing studies. This approach remains a practical
and lightweight method to uncover possible time-of-day or

day-of-week patterns in behavior that might otherwise be
obscured by averaging over entire weeks or months.

Feature Matrix

After feature extraction, we created a feature matrix for each
of the 6 sensors (calls, locations, screen use, heart rate, sleep,
and steps) and each of the 2 EMA types (average and presurvey
EMA), containing features for the 15 temporal slices in
consecutive 2- or 4-week periods during each participant’s study
follow-up. The “action” feature matrix captured each
participant’s actions during the current (2- or 4-week) period.
At the end of this period, we predicted the patient-reported
symptom severity as the outcome. For each participant, we
concatenated features from the previous (2- or 4-week) period,
which captured the context for the current actions, with the
“action” feature matrix to obtain the “action and context” feature

matrix. Thus, to predict the outcome at the end of the ith period
at time T=iP where P=2 weeks or 4 weeks, the action feature
matrix comprised features from time (i-1)P and time iP, whereas
the action and context feature matrix comprised features from
time (i-2)P and time iP (Figure 1).

Handling Missing Data
Missing sensor data could occasionally occur due to several
reasons. Multimedia Appendix 1 (section A.2) describes the
detailed approach for handling missing data.

ML Pipeline Using Action and Context Behavioral
Features

Overview

We built ML models using support vector machines (SVMs)
with radial basis function (RBF) kernels and validated our
models using leave-5-participants-out cross-validation to
mitigate overfitting. As an overview, the pipeline involved 6
steps. First, in the generating feature sets step, we created model
configurations that enabled assessment of the utility of EMA
features and contextual feature information. Second, we
performed training and validating 1-sensor and EMA-only
models step for each of the 6 sensor feature types (calls, heart
rate, location, screen use, sleep, and steps) and either EMA
feature type (average or presurvey EMA features). Third, during
the obtaining predictions from combinations of sensors step,
we combined detection probabilities from 1-sensor models to
identify the best-performing combined sensor model. Fourth,
during obtaining predictions from combinations of sensors and
EMA step, we combined detection probabilities from 1-sensor
models and an EMA-only model to identify the best-performing
final model. Fifth, we performed the classifying different
outcomes step by running the pipeline for each outcome. Finally,
we performed a comparison of ML models using bootstrapping
predictions.

Generating Feature Sets

We generated features for the different model configurations
to assess the utility of EMA features and contextual feature
information. For EMA, we used (1) no EMA information, (2)
only presurvey EMA, or (3) average EMA values. For context,
we either used (1) only action or (2) action and context. In total,
there were 6 configurations based on these features.
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Training and Validating 1-Sensor and EMA-Only Models

For each sensor and EMA feature matrix, we built a model of
the selected features from the given sensor or EMA type to
predict an outcome (Figure 2). We trained models using an
SVM classifier with RBF Kernel (SVM-RBF). We used
leave-5-participants-out cross-validation to choose the

regularization parameter for SVM-RBF. The folds were split
in a stratified manner, and classes were balanced in the
SVM-RBF to ensure that positive and negative classes of the
binary outcomes were adequately represented. We chose the
model with the best F1-score for a given outcome, which
provided the prediction probabilities for the outcome. The
process for one outcome was independent of the other outcomes.

Figure 2. Feature combinations from sensors and ecological momentary assessments (EMAs).

Obtaining Predictions From Combinations of Sensors

We concatenated prediction probabilities from all six 1-sensor
models into a single feature vector and entered it as input into
an ensemble classifier, that is, AdaBoost with Decision Tree
Classifier as a base estimator, which generated the final
prediction for each outcome. For all outcomes, only the
prediction probabilities of the positive label “1” were
concatenated. The positive labels were the “presence of
depressive symptoms” for depression, “high burden” for global
MS neurological symptom burden, “severe fatigue” for fatigue,
and “poor sleep quality” for sleep quality. We tuned the
“n_estimators” (ie, the maximum number of estimators at which
boosting was terminated) parameter during
leave-5-participants-out cross-validation to achieve the
best-performing combined model.

To analyze the contribution of each sensor combination, we
implemented a feature ablation analysis by generating detection
results for all possible combinations of 1-sensor models. For
six 1-sensor models, there were 57 combinations of feature sets,
as the total combinations = combinations with 2 sensors +...+
combinations with 6 sensors:

Obtaining Predictions From Combinations of Sensors and
EMA-Only Models

We concatenated prediction probabilities from all six 1-sensor
models and one EMA-only model into a single feature vector
and entered it as input into an ensemble classifier using the same
method for sensors (as described in aforementioned section) to
train this combined classifier.

To analyze the utility of each sensor and EMA combination,
we implemented a feature ablation analysis by generating
detection results for all possible combinations of 1-sensor
models and the EMA model. For six 1-sensor models and one
EMA model, there were 120 combinations of feature sets, as
the total combinations = combinations with 2 sensors or 1 sensor
and EMA +...+ combinations with 6 sensors or EMA:

Classifying Different Outcomes

We ran the following pipeline independently for each of the 4
patient-reported symptoms as the outcomes, first using
action-only features and then using action and context features:
(1) training and validating six 1-sensor models without EMA
and 57 combined models, (2) training and validating six 1-sensor
models plus average EMA and 120 combined models, and (3)
training and validating six 1-sensor models plus presurvey EMA
and 120 combined models.

Each patient had multiple “samples” (ie, prediction periods)
over the study duration. For each patient-reported symptom,
we trained 6 final models based on whether the model included
action versus action and context features or whether the model
contained no EMA, average EMA, or presurvey EMA. Here,
the “positive” label refers to the outcome of interest (eg,
presence of depressive symptoms, presence of high global MS
neurological symptom burden, presence of severe fatigue, or
presence of poor sleep quality). For each final model of a given
outcome, we reported the model performance of the best
combination of sensors and EMA. We also reported the
performance of baseline models (ie, a simple majority classifier
whereby every point was assigned to whichever was in the
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majority in the training set) as well as models containing all 6
sensors or all 6 sensors plus 1 EMA type.

Comparing ML Models by Bootstrapping Predictions

For model performance metrics, we assessed accuracy and
F1-score. Accuracy is the percentage of samples for which the
model correctly predicted the outcome label. F1-score measures
the harmonic mean of precision and recall. Precision is the
positive predictive value, that is, the number of true positive
labels divided by the number of all positive labels (true positive
+ false positive). Recall is sensitivity, that is, the number of true
positive labels divided by the number of all samples that should
have the positive labels (true positive + false negative). For each
patient-reported symptom, we compared the bootstrapped
accuracy and F1 scores among the 6 final models in a pairwise
manner (30 comparisons). Specifically, we computed the 95%
CIs of differences in their bootstrapped accuracy and F1-score.
We performed hierarchical bootstrapping by randomly sampling
(participant ID and prediction week) with replacement over

10,000 iterations. In each iteration, we took samples with the
same (participant ID and prediction week) across the 2 models
being compared and computed the difference in accuracy and
difference in F1-score, respectively. After computing all
iterations, we generated the 95% CIs of the difference in
accuracy and the difference in F1-score (2-tailed alpha=.05). If
one of the models in a pair was not statistically better than the
other, we considered the model requiring the least amount of
sensor and EMA data to be “better.”

Results

Patient Profile
The study included 104 people with MS who completed at least
12 weeks of data collection between November 2019 and
January 2021. The subset of the participants who completed 24
weeks of data collection shared similar characteristics as the
study cohort, which was largely representative of the larger
clinic-based MS population (Table 1).
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Table 1. Patient characteristics.

P value24 weeks (n=44)12 weeks (n=104)Characteristics

.4245.7 (11.2)44 (11.8)Age (y), mean (SD)

.61Sex, n (%)

39 (88.6)88 (84.6)Female

5 (11.4)16 (17.3)Male

.97Race, n (%)

0 (0)0 (0)Asian

2 (4.5)7 (6.7)Black or African American

42 (95.5)97 (93.3)White

0 (0)0 (0)Not reported

.99Ethnicity, n (%)

44 (100)104 (100)Non-Hispanic

0 (0)0 (0)Hispanic

0 (0)0 (0)Not reported

.4815.0 (10.5)13.7 (10.1)Disease duration (y), mean (SD)

.32Disease subtype, n (%)

44 (100)100 (96.2)RRMSa and precursors (RISb and CISc)

0 (0)4 (3.8)PMSd

.39DMTe efficacy, n (%)

11 (25.0)27 (26.0)No DMT

10 (22.7)19 (18.3)Standard Efficacy

23 (52.3)58 (55.8)Higher Efficacy

.900.77 (0.91)0.79 (0.9)PHQf-2 score, mean (SD)

.6011.2 (4.3)10.8 (4.2)PHQ-9 scoreg, mean (SD)

.617.9 (5.5)7.4 (5.4)MSRS-Rh score, mean (SD)

.918.6 (4.6)8.5 (4.7)MFISi score, mean (SD)

.5810.2 (4.0)9.8 (4.0)PSQIj score, mean (SD)

aRRMS: relapsing-remitting multiple sclerosis.
bRIS: radiologically isolated syndrome.
cCIS: clinically isolated syndrome.
dPMS: progressive multiple sclerosis.
eDMT: disease-modifying therapies.
fPHQ: Patient Health Questionnaire.
gPHQ-9 was only deployed when the participants scored ≥1 on the PHQ-2.

MSRS: Multiple Sclerosis Rating Scale-Revised.
iMFIS: Modified Fatigue Impact Scale-5.
jPSQI: Pittsburgh Sleep Quality Index.

Predicting Outcomes Using Action and Context
Features From Sensor and EMAs

Overview
We reported the accuracy and F1-score of the ML pipeline for
predicting each type of patient-reported symptom using the
best-performing sensor and EMA combinations (ie, the set of

sensors and average or presurvey EMA) for models trained on
action-only features and action and context features (Table 2).
Separately, we reported the performance of individual 1-sensor,
average EMA, and presurvey EMA models (Table S1 in
Multimedia Appendix 1) as well as models combining all 6
sensors, 6 sensors and average EMA, or 6 sensors and presurvey
EMA (Table S2 in Multimedia Appendix 1). Finally, we
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indicated the best combination of sensors and EMA selected for each model type (Table S3 in Multimedia Appendix 1).

Table 2. Performance of the machine learning pipelinea.

Sleep qualityFatigueMSb symptom burdenDepressionModel

F1-scoreAccuracy
(%)

F1-scoreAccuracy
(%)

F1-scoreAccuracy
(%)

F1-scoreAccuracy
(%)

0.7720.68680.77770.6875Action-Only and NoEMAc

0.67690.74740.74740.6975Action and Context and NoEMA

0.71740.73720.78780.7781Action-Only and AvgEMA

0.69730.76760.8800.7781Action and Context and AvgEMA

0.7720.68680.78780.7681Action-Only and PresurveyEMA

0.7740.78770.75750.7781Action and Context and PresurveyEMA

aWe used the best sensor or sensor and EMA combinations for predicting the 4 patient-reported symptoms in people with MS: depressive symptom,
global MS neurological symptom burden, fatigue, and sleep quality. “Action-Only and NoEMA” was the best model that combined predictions of
1-sensor models trained on action-only features. “Action and Context and NoEMA” was the best model that combined predictions of 1-sensor models
trained on action and context features. “Action-Only and AvgEMA” was the best model that combined predictions of 1-sensor models and the average
EMA model trained on action-only features. “Action and Context and AvgEMA” was the best model that combined predictions of 1-sensor models and
the average EMA model trained on action and context features. “Action-Only and PresurveyEMA” was the best model that combined predictions of
1-sensor models and the presurvey EMA model trained on action-only features. “Action and Context and PresurveyEMA” was the best model that
combined predictions of 1-sensor models and the presurvey EMA model trained on action and context features.
bMS: multiple sclerosis.
cEMA: ecological momentary assessment.

Depressive Symptoms
For predicting the presence of depressive symptoms (vs the
absence of depressive symptoms) every 2 weeks, the baseline
model (simple majority classifier) had an accuracy of 59.5%.
The model containing all 6 sensors and no EMA had an accuracy
of 74.7% with action-only features (25.5% relative improvement
over the baseline), and an accuracy of 72.2% with action and
context features (21.3% relative improvement over the baseline;
Table S2 in Multimedia Appendix 1). The model containing
the best combination of sensors and no EMA had an accuracy
of 74.7% with action-only features (25.5% relative improvement
over the baseline; best combination: calls, heart rate, location,
screen use, sleep, and steps), and an accuracy of 74.7% with
action and context features (25.5% relative improvement over
the baseline; best combination: calls, heart rate, location, screen
use, and sleep; Table 2). The model containing the best
combination of sensors and average EMA had an accuracy of
80.8% with action-only features (35.8% relative improvement
over the baseline; best combination: heart rate, sleep, steps, and
average EMA), and an accuracy of 81.3% with action and
context features (36.6% relative improvement over the baseline;
best combination: calls, heart rate, location, sleep, and average
EMA). The model containing the best combination of sensors
and presurvey EMA had an accuracy of 80.6% with action-only
features (35.5% relative improvement over the baseline; best
combination: heart rate, steps, and presurvey EMA) and an
accuracy of 81.4% with action and context features (36.8%
relative improvement over the baseline; best combination: heart
rate, location, screen use, and presurvey EMA).

When comparing the model performance in a pairwise manner
(Table 2), Action and Context and PresurveyEMA models had
the highest bootstrapped average accuracy of 81.4% and the

highest average F1-score of 0.77. This model significantly
outperformed both NoEMA models: Action-Only and NoEMA
(absolute increase of 6.7% in accuracy and 0.09 in F1-score)
and Action and Context and NoEMA (absolute increase of 6.6%
in accuracy and 0.1 in F1-score). Similarly, Action-Only and
PresurveyEMA models significantly outperformed both NoEMA
models: Action-Only and NoEMA (absolute increase of 6.0%
in accuracy and 0.09 in F1-score) and Action and Context and
NoEMA (absolute increase of 6.1% in accuracy and 0.09 in
F1-score). Models with average EMA (Action-Only and
AvgEMA, Action and Context and AvgEMA) also significantly
outperformed both NoEMA models. However, there were no
statistically significant differences between Action-Only and
PresurveyEMA versus Action and Context and PresurveyEMA
or between any of the PresurveyEMA models and the AvgEMA
models.

Thus, for predicting the presence of depressive symptoms every
2 weeks, the Action-Only and PresurveyEMA model generated
the best performance (accuracy=80.6%; F1-score=0.76) while
requiring the least amount of sensor (eg, heart rate and steps)
and EMA data (eg, presurvey EMA). Presurvey EMA was the
last EMA response on the day before survey completion to
assess patient-reported depressive symptoms.

Global MS Neurological Symptom Burden
For predicting high global MS neurological symptom burden
(vs low burden) every 4 weeks, the baseline model had an
accuracy of 51.1%. The model containing all 6 sensors and no
EMA had an accuracy of 70.7% with action-only features (38.4%
relative improvement over the baseline), and an accuracy of
72.0% with action and context features (40.9% relative
improvement over the baseline; Table S2 in Multimedia
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Appendix 1). The model containing the best combination of
sensors and no EMA had an accuracy of 77.3% with action-only
features (51.3% relative improvement over the baseline; best
combination: heart rate, location, sleep, and steps), and an
accuracy of 73.8% with action and context features (44.4%
relative improvement over the baseline; best combination: heart
rate, location, and sleep; Table 2). The model containing the
best combination of sensors and average EMA had an accuracy
of 77.9% with action-only features (52.4% relative improvement
over the baseline; best combination: heart rate, location, sleep,
steps, and average EMA), and an accuracy of 79.7% with action
and context features (56% relative improvement over the
baseline; best combination: calls, heart rate, screen, sleep, and
average EMA). The model containing the best combination of
sensors and presurvey EMA had an accuracy of 78% with
action-only features (52.6% relative improvement over the
baseline; best combination: location, sleep, steps, and presurvey
EMA) and an accuracy of 75.1% with action and context
features (47.0% relative improvement over the baseline; best
combination: heart rate, location, screen use, sleep, and
presurvey EMA).

When comparing the model performance in a pairwise manner
(Table 2), none was significantly better than the most
parsimonious Action-Only and NoEMA model. Thus, for
predicting high global MS symptom burden every 4 weeks, the
Action-Only and NoEMA model generated the best performance
(accuracy=77.3%; F1-score=0.77) while requiring the least
amount of sensor data (ie, heart rate, location, sleep, and steps;
trained on action-only features) and importantly no EMA data
(ie, no active participant input).

Fatigue Impact
For predicting severe fatigue (vs mild fatigue) every 4 weeks,
the baseline model had an accuracy of 50.9%. The model
containing all 6 sensors and no EMA had an accuracy of 60.4%
with action-only features (18.7% relative improvement over the
baseline), and an accuracy of 69.7% with action and context
features (36.9% relative improvement over the baseline; Table
S2 in Multimedia Appendix 1). The model containing the best
combination of sensors and no EMA had an accuracy of 67.6%
with action-only features (32.8% relative improvement over the
baseline; best combination: calls, heart rate, screen use, and
steps), and 73.8% with action and context features (45% relative
improvement over the baseline; best combination: heart rate,
screen use, and steps; Table 2). The model containing the best
combination of sensors and average EMA had an accuracy of
72.2% with action-only features (41.9% relative improvement
over the baseline; best combination: heart rate, screen use, steps,
and average EMA), and an accuracy of 76.1% with action and
context features (49.5% relative improvement over the baseline;
best combination: heart rate, screen use, sleep, steps, and average
EMA). The model containing the best combination of sensors
and presurvey EMA had an accuracy of 68.3% with action-only
features (34.2% relative improvement over the baseline; best
combination: heart rate, screen, steps, and presurvey EMA),
and an accuracy of 77.1% with action and context features
(51.5% relative improvement over the baseline; best
combination: calls, heart rate, screen use, steps, and presurvey
EMA).

When comparing the model performance in a pairwise manner
(Table 2), none was significantly better than the Action and
Context and NoEMA model. Thus, for predicting severe fatigue
every 4 weeks, the Action and Context and NoEMA model
generated the best performance (accuracy=73.8%;
F1-score=0.74) while requiring the least amount of sensor data
(ie, heart rate, screen use, and steps; trained on action and
context features) and importantly no EMA data (ie, no active
participant input).

Sleep Quality
For predicting poor sleep quality (vs better sleep quality) every
4 weeks, the baseline model had an accuracy of 56.2%. The
model containing all 6 sensors and no EMA had an accuracy
of 58.2% with action-only features (3.6% relative improvement
over the baseline), and an accuracy of 68.7% with action and
context features (22.2% relative improvement over the baseline;
Table S2 in Multimedia Appendix 1). The model containing
the best combination of sensors and no EMA had an accuracy
of 72.0% with action-only features (28.1% relative improvement
over the baseline; best combination: heart rate, location, sleep,
and steps), and an accuracy 69.5% with action and context
features (23.7% relative improvement over the baseline; best
combination: calls, heart rate, sleep, and steps; Table 2). The
model containing the best combination of sensors and average
EMA had an accuracy of 74.4% with action-only features (32.4%
relative improvement over the baseline; best combination: heart
rate, location, screen, sleep, and average EMA), and an accuracy
of 72.7% with action and context features (29.4% relative
improvement over the baseline; best combination: heart rate,
location, sleep, steps, and average EMA). The model containing
the best combination of sensors and presurvey EMA had an
accuracy of 72.0% with action-only features (28.1% relative
improvement over the baseline; best combination: heart rate,
location, sleep, and steps while presurvey EMA was not
selected), and an accuracy of 74% with action and context
features (31.7% relative improvement over the baseline; best
combination: calls, heart rate, sleep, and presurvey EMA).

When comparing the model performance in a pairwise manner
(Table 2), none was significantly better than the most
parsimonious Action-Only and NoEMA model. Thus, for
predicting poor sleep quality every 4 weeks, the Action-Only
and NoEMA model generated the best performance
(accuracy=72.0%; F1-score=0.7) while requiring the least
amount of sensor data (ie, heart rate, location, sleep, and steps;
trained on action-only features) and importantly no EMA data
(ie, no active participant input).

Discussion

Principal Findings
For the primary goal of this study, which analyzed
approximately 12,500 days of passively and continuously
collected data from people with MS, we report the feasibility
of a pragmatic and low-cost digital phenotyping approach that
enables longitudinal tracking of common MS-related
patient-reported symptoms in the patient’s own environment
with minimal active patient engagement. Our approach harnesses
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passively collected sensor and behavior data from smartphones
and fitness trackers and deploys ML models that achieve the
highest prediction performance based on the most parsimonious
data collection requirement. The key study finding is that, over
12 weeks (and 24 weeks in a subset), the best-performing models
achieved potentially clinically actionable accuracy (as well as
F1-score, which summarizes positive predictive value and
sensitivity) for predicting the short-term presence of depressive
symptoms (every 2 weeks), high global MS neurological
symptom burden, severe fatigue, and poor sleep quality (every
4 weeks) in people with MS, all significantly outperforming the
baseline models.

We consistently found that heart rate, step count, and sleep data
outperformed other sensors, likely because they directly capture
facets of physical activity, mobility, and rest patterns central to
MS symptom fluctuations [6,7]. Unlike metrics, such as screen
use or call logs, which are more likely to be confounded by
external factors, heart rate and steps reflect exertion levels and
functional status. Similarly, sleep data reveal potential
disturbances in rest and circadian rhythm [40]. Consequently,
these sensor streams may correlate more strongly with clinically
meaningful outcomes in MS, aligning with previous findings
that physical activity and sleep measures track disease-related
disability and symptom burden more robustly than other
behavioral metrics [8,11].

For a secondary study goal, we reported the marginal utility of
behavioral features from the previous period (context features)
in addition to behavioral features from the current period (action
features) in helping the models contextualize an individual’s
current behavior and in improving digital phenotyping of the
most common MS symptoms. For each patient-reported
symptom, we performed pairwise comparisons of the 6 best
models combining sensor or sensor plus EMA (comprising
action-only vs action and context features; Table 2) and
operationally defined the “best” model as having the highest
accuracy and F1-score while also requiring the least amount of
sensor and EMA data. For predicting depressive symptoms,
global MS neurological symptom burden, and sleep quality, the
models containing action-only features were the “best” because
the addition of context features did not improve the prediction
of these patient-reported symptoms. In contrast, models
containing action and context features improved the prediction
of fatigue, a debilitating symptom for people with MS. Thus,
behavioral features from longer periods that include context
features (ie, the previous and current period) may have utility
in the longitudinal symptom tracking of a smaller subset of
common MS symptoms, such as fatigue. Methodologically, the
addition of context features does not substantially increase
complexity because context features derive from the same data
streams and feature computation as action features, except for
drawing data from the preceding period. Consequently, there
is no additional data collection or substantial computational
burden. Overall, context features may be valuable given the
value of a longer temporal window for fatigue prediction while
maintaining the same modeling pipeline.

For another secondary study goal, we reported the limited utility
of incorporating minimal active patient input via EMA (ie,

multiple-choice response to 2 brief survey questions) into ML
models in improving digital phenotyping of the most common
MS symptoms. For 3 of the 4 patient-reported symptoms (ie,
global MS neurological symptom burden, fatigue, and sleep
quality), the best models containing a combination of sensors
plus average or presurvey EMA did not significantly outperform
the best models containing a combination of sensors without
EMA. Thus, passively collected sensor data without any active
patient engagement were sufficient to predict the severity of
these patient-reported symptoms. For fatigue, it is even more
notable that 1 EMA question inquires tiredness (ie, “How tired
do you feel?” on a 1-4 scale), which captures the transient and
momentary feeling of tiredness as a state. In contrast, the
patient-reported outcome based on MFIS-5 questionnaire
measures the impact of fatigue on cognitive and physical
function over the preceding 2 weeks. Thus, an individual may
report feeling very tired at a given moment (ie, high EMA
response score) but experience low impact of fatigue and still
function effectively (ie, low MFIS-5 score). While the EMA
question regarding momentary tiredness and MFIS-5
correlate, passively sensed behaviors are more likely to reflect
the impact of fatigue on daily activities. This could explain why
the EMA did not improve model performance in predicting the
MFIS-5 score beyond passive sensor features. In contrast, for
depression, the other EMA question (“How depressed do you
feel?” on a 1-4 scale) aligns more closely with elements of the
patient-reported outcome based on PHQ-9, focusing on
emotional symptoms (rather than the impact of depressive
symptoms), likely providing additional predictive value beyond
passive sensor features. Overall, the EMA question of tiredness
might be too simplistic or insensitive to capture the complexity
and dynamics of fatigue impact on the physical, cognitive, and
psychological function in people with MS [47,48]. For
depressive symptoms, the best models containing a combination
of sensors plus average or presurvey EMA significantly
outperformed the best models containing a combination of
sensors without EMA. While sensor data alone predicted
depressive symptoms with reasonable accuracy (74.7%), the
addition of presurvey EMA yielded an 8.8% absolute increase
in accuracy. This result was unsurprising given that the other
EMA question asked participants to rate the level of depressed
feeling. Notably, the best models containing presurvey EMA
were comparable to those containing average EMA, while
presurvey EMA (ie, the last EMA on the day before the
patient-reported symptom survey) required substantially less
active engagement by participants than average EMA (ie, 3
times daily). Overall, minimally active participant engagement
may have some utility in the longitudinal symptom tracking of
certain MS symptoms, such as depressive symptoms.

Broadly, several aspects of our study differentiated from
previous works, all with the goal of bringing digital phenotyping
closer to clinical practice for people with MS. First, to
demonstrate a basic feature of real-world applicability, our
pragmatic study design leveraged each participant’s own digital
device (eg, smartphone) to mitigate missing sensor data capture.
In contrast, the earliest studies required a study-specific
smartphone separate from participant’s own smartphone and
increased participant’s burden [49]. Second, our approach
passively harnessed data from a combination of multiple sensors

J Med Internet Res 2025 | vol. 27 | e70871 | p. 12https://www.jmir.org/2025/1/e70871
(page number not for citation purposes)

Xia et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


in both smartphones and fitness trackers. Previous studies
predicting MS outcomes based on passively sensed behavior
largely relied on either a smartphone or fitness tracker (but not
both) or a single sensor type [6,7,11,13]. Third, our ML pipeline
prioritized the most parsimonious predictive models containing
the least amount of sensor and EMA data (ie, minimal or no
active participant engagement) while still achieving clinically
actionable accuracy and other prediction metrics. By
comparison, most previous digital phenotyping efforts in MS
prioritized performance without considering the amount of
sensor data required for prediction and indeed often required
active participant engagement, which would lead to lower
adherence than passive sensing [9,49-56]. For instance, the
study by Gashi et al [9] required participants to perform motor
performance tests to classify fatigue levels in addition to
passively sensed behavioral data. Finally, our study outcomes
as measured by validated survey instruments included a
spectrum of common clinically relevant patient-reported
symptoms that collectively reduce the quality of life in people
with MS. In contrast, standard clinical trial end points, such as
clinician-rated disability or functional testing
scores [6,8,9,13,14,57-65], as well as a single clinical outcome
(at a time) [54,66-69] in previous studies insufficiently captured
the full real-world patient experience.

This study also built on one of our own previous studies, which
used passively sensed behavior changes during a state-mandated
stay-at-home period (as compared to the prepandemic baseline)
to predict depressive symptom, high global MS symptom
burden, severe fatigue, and poor sleep quality in people with
MS in a unique natural experiment in the setting of a global
pandemic [19]. Specifically, we predicted the average value of
patient-reported outcomes for each patient only once during a
period (ie, the local COVID-19 stay-at-home period), whereas
this study made repeated clinical predictions (over consecutive
2- or 4-week periods) during a 12- or 24-week study duration
to emulate long-term symptom tracking in the real world. As
methodological novelties, this study further investigated the
added utility of context behavioral features (from the previous
periods) and 2 types of EMAs in improving digital phenotyping
in MS.

Our digital phenotyping approach, with minimal or no active
patient input that reaches potentially clinically actionable
prediction performance, warrants additional investigations of
its future clinical role in continuous tracking of patient-reported
symptoms and in assisting comprehensive MS care in the
real-world setting. Timely management of these common
patient-reported symptoms could reduce delays in symptom
management and greatly improve the quality of life for people
with MS. Of clinical relevance, patient-reported symptoms
assessed in this study are based on well-validated survey
instruments that correlate with and complement clinician-rated
outcomes. Practically, one can envision deploying continuous
digital phenotyping to enable not only patient self-monitoring
between routine clinic appointments but also crucial clinical
triage for timely interventions (eg, medication initiation and
counseling). Such an approach may even be potentially useful
in settings of limited health care access and resources, though
such clinical application would require dedicated testing.

While this proof-of-concept study demonstrates the potential
clinical applications of digital phenotyping, several challenges
will require solutions for eventual successful real-world
implementation. First, patient adherence (eg, wearing or carrying
the devices and keeping devices charged) is a key prerequisite,
as continuous passive sensing relies on consistent use of a
charged device. While participants in this study demonstrated
high levels of engagement and adherence, successful monitoring
requires frequent supervision of real-time adherence by the
research staff. An effective real-world implementation will
require pragmatic techniques that maintain patient adherence
without increasing patient or clinician burden. For example,
future pragmatic strategies to improve adherence may include
artificial intelligence coupled with automated reminders and
user-friendly device designs. Second, easily interpretable
findings from the digital phenotyping data are crucial to translate
into clinical action and for incorporation into clinical practice.
Using clinically meaningful binary thresholds of common
symptom severity is one example of clinical interpretability.
Third, eventual clinical implementation of digital phenotyping
will require a rigorous regulatory approval process, acceptance
by health care systems based on cost-effectiveness as added
value, and technical integration with existing electronic health
records. Finally, the digital health and clinical community will
need to carefully safeguard data privacy and potential biases in
ML models. In particular, we will ensure secure data storage,
transparent model interpretability, and equitable algorithm
performance across broad patient populations.

Limitations
Our study has at least 2 limitations. First, the study participant
size, while larger than most previous digital phenotyping studies
in MS, was still relatively modest. We made predictions for
>700 samples for depressive symptoms (in 2-week periods) and
>300 samples for global MS neurological symptom burden,
fatigue, and sleep quality (in 4-week periods) across 104
participants with MS. Notably, our well-characterized cohort
also contrasts with larger studies where the diagnosis and
patient-reported outcomes could not be independently
verified [10,55]. Crucially, we mitigated model overfitting using
leave-5-participants-out-cross-validation such that the
participants used for training and testing were different in each
fold. The consistently robust model performance across all 5
folds and for all 4 common reported symptoms by participants
was reassuring. Second, we recruited study participants from a
single clinic-based cohort, representative of its local patient
population. While MS is a disease predominantly affecting
women of European descent, the high proportion of White and
female participants in the study limits the generalizability of
the specific findings, though the potential clinical implications
are still valid as a proof-of-concept study. Future validation in
external cohorts with more racially and ethnically diverse patient
populations would improve the generalizability of the approach.

Conclusions
In summary, our digital phenotyping approach using passively
sensed data from patients’ own smartphones and wearable
fitness trackers could aid them with real-world, continuous,
self-monitoring of common symptoms in their native
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environment. It may also assist clinicians with better triage of
patient needs for timely intervention in MS and potentially other

chronic neurological disorders.
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ML: machine learning
MS: multiple sclerosis
MSRS-R: Multiple Sclerosis Rating Scale-Revised
PHQ-9: Patient Health Questionnaire-9
PSQI: Pittsburgh Sleep Quality Index
RBF: radial basis function
SVM: support vector machine
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