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Abstract

Background: Pediatric respiratory diseases, including asthma and pneumonia, are major causes of morbidity and mortality in
children. Auscultation of lung sounds is a key diagnostic tool but is prone to subjective variability. The integration of artificial
intelligence (AI) and machine learning (ML) with electronic stethoscopes offers a promising approach for automated and objective
lung sound.

Objective: This systematic review and meta-analysis assess the performance of ML models in pediatric lung sound analysis.
The study evaluates the methodologies, model performance, and database characteristics while identifying limitations and future
directions for clinical implementation.

Methods: A systematic search was conducted in Medline via PubMed, Embase, Web of Science, OVID, and IEEE Xplore for
studies published between January 1, 1990, and December 16, 2024. Inclusion criteria are as follows: studies developing ML
models for pediatric lung sound classification with a defined database, physician-labeled reference standard, and reported
performance metrics. Exclusion criteria are as follows: studies focusing on adults, cardiac auscultation, validation of existing
models, or lacking performance metrics. Risk of bias was assessed using a modified Quality Assessment of Diagnostic Accuracy
Studies (version 2) framework. Data were extracted on study design, dataset, ML methods, feature extraction, and classification
tasks. Bivariate meta-analysis was performed for binary classification tasks, including wheezing and abnormal lung sound
detection.

Results: A total of 41 studies met the inclusion criteria. The most common classification task was binary detection of abnormal
lung sounds, particularly wheezing. Pooled sensitivity and specificity for wheeze detection were 0.902 (95% CI 0.726-0.970)
and 0.955 (95% CI 0.762-0.993), respectively. For abnormal lung sound detection, pooled sensitivity was 0.907 (95% CI
0.816-0.956) and specificity 0.877 (95% CI 0.813-0.921). The most frequently used feature extraction methods were
Mel-spectrogram, Mel-frequency cepstral coefficients, and short-time Fourier transform. Convolutional neural networks were
the predominant ML model, often combined with recurrent neural networks or residual network architectures. However, high
heterogeneity in dataset size, annotation methods, and evaluation criteria were observed. Most studies relied on small, single-center
datasets, limiting generalizability.

Conclusions: ML models show high accuracy in pediatric lung sound analysis, but face limitations due to dataset heterogeneity,
lack of standard guidelines, and limited external validation. Future research should focus on standardized protocols and the
development of large-scale, multicenter datasets to improve model robustness and clinical implementation.
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Introduction

Accurate and timely diagnosis is essential for the treatment of
pediatric respiratory illnesses, which remain a leading cause of
morbidity and mortality among children worldwide [1,2].
Auscultation of lung sounds is the most widely used method of
respiratory diagnosis due to its simplicity, cost-effectiveness,
and safety. However, conventional auscultation requires an
in-person encounter, is prone to subjective interpretation, and
cannot be shared or reviewed among clinicians, leading to high
interobserver variability [3].

In recent years, the development of electronic stethoscopes has
enabled the digital storage and computational analysis of lung
sounds, leading to the creation of large-scale databases [4,5].
Artificial intelligence (AI)–driven lung sound analysis based
on these databases has opened new opportunities to enhance
the accuracy and reliability of respiratory disease diagnosis [6].
Automated AI models for lung sound analysis can facilitate

prompt diagnosis and monitor disease progression is particularly
useful in remote areas lacking experienced pediatricians or
during public health crises, such as the COVID-19 pandemic,
when large-scale respiratory screenings are needed [7,8].

The typical process for developing an AI model to assess
pediatric lung sounds includes the following steps: (1) patient
recruitment, (2) recording of lung sounds, (3) physician labeling
of lung sounds, (4) database creation with separate training and
testing sets, (5) feature extraction, (6) machine learning (ML)
model development and training, and (7) evaluation of the model
with appropriate performance metrics (Figure 1). These steps
could vary between studies, as there are no standardized
protocols or guidelines in this area. The current body of research
demonstrates high variability in study design, dataset sizes,
tasks implemented, and reported outcomes, making it difficult
to draw definitive conclusions about the effectiveness of these
technologies. Therefore, a comprehensive review of the existing
evidence for the application of ML models in pediatric lung
sound analysis is necessary.

Figure 1. General process of developing a machine learning model for pediatric lung sound assessment.

This systematic review and meta-analysis aim to systematically
assess the accuracy of reported ML models on pediatric lung
sound analysis, by examining the tasks, methodologies,
databases, and evaluation metrics used in original studies.
Ultimately, we seek to establish the robustness of current ML
models and provide insights for further research.

RQ1: Is it feasible to reliably classify pediatric lung sounds
using ML models?

RQ2: How accurately can ML models classify lung sounds into
different types of lung sounds or lung pathologies?
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Methods

Search Strategy
The literature search was conducted according to the Preferred
Reporting Items for Systematic Reviews and Meta-Analysis for

Diagnostic Test Accuracy Studies (PRISMA-DTA) statement
[9]. We followed the PRIMSA-DTA checklist (Multimedia
Appendix 1 [9]). The main research question of this systematic
literature review was to find studies that developed ML models
for classifying abnormal lung sounds or pediatric lung
pathologies using pediatric lung sound data (Textbox 1).

Textbox 1. Population, Intervention, Comparator, Outcome, and Study design (PICOS) for the systematic review.

Inclusion criteria

Population:

• Pediatric population (age≤18 years).

• Lung sound database specified.

• Manuscript in English.

Intervention:

• Machine learning model classifying at least one type of abnormal lung sounds (wheeze, crackle, stridor, or rhonchi) or lung pathologies (pneumonia,
asthma, bronchiolitis, etc).

Comparator:

• Labeling provided by the database.

Outcomes:

• At least one performance metric reported: specificity, sensitivity, accuracy, F1-score, or other specified scoring system.

Study design:

• Original studies on machine learning model development.

Exclusion criteria

Population:

• Adult only or adult majority.

• Database not mentioned.

• Studies focused on cardiac auscultation.

Intervention:

• No machine learning model used.

Comparator:

• No labeling provided.

Outcomes:

• No performance metric provided.

Study design:

• Review articles and validation studies of existing models.

Database Search
We searched Medline via PubMed, Embase, Ovid, Web of
Science, and IEEE Xplore using search queries including the
following keywords and synonyms such as “infant,” “child,
preschool,” “child,” “adolescent,” “pediatrics,” “respiratory
sounds,” “auscultation,” “adventitious sound,” “wheeze,”
“crackle,” “rale,” “stridor,” “rhonchus,” “machine learning,”
“neural network,” and “artificial intelligence.” Exact queries

are detailed in Multimedia Appendix 2. The search covered
articles from January 1, 1990, to December 16, 2024.

Eligibility Criteria
Studies were included if they were based on a pediatric
population (age ≤18 years), or if more than half of the population
were of pediatric age. Lung sound databases—whether public
or private—needed to be specified. Only manuscripts in English
were considered. Eligible studies applied original ML models
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for classifying at least one type of abnormal lung sound (wheeze,
crackle, stridor, or rhonchi) or lung pathology (eg, pneumonia,
asthma, bronchiolitis, etc). Studies without ML algorithms and
studies that only performed validation of previously developed
models were excluded. Labeling methods needed to be specified
for comparators, and at least one performance metric was
needed. Abstracts, conference proceedings, and journal papers
were included.

Study Selection
Two researchers (JSP and SYP) independently performed
abstract and full-text screening. Disagreements were resolved
by discussion and mediation by a third researcher (DIS). Articles
in languages other than English, duplicate articles from multiple
databases, and studies that did not meet the eligibility criteria
for population and intervention were excluded during abstract
screening. In the full-text review, duplicate studies (eg,
conference abstracts later published as full journal papers) were
excluded and studies not meeting eligibility criteria due to study
design were excluded. EndNote 21 (Clarivate Analytics) was
used during this process.

Data Extraction
Data extraction was performed by 2 researchers (JSP and SYP)
using a predefined data extraction form in Excel. Article type
(conference proceeding or journal paper), first author, year of
publication, and journal or conference name were extracted
from Endnote. Country of data collection, age of study
population, database characteristics, recording device, sample
size, train-test split, classification task (eg, wheeze detection,
multiclass classification of lung sounds, and asthma
classification), feature extraction methods, summary of ML
models, and performance metrics were collected. For binary
classification, confusion matrix data—true positive (TP), true
negative (TN), false positive (FP), and false negative

(FN)—were extracted, and if not provided, they were calculated
from the sample size and performance metrics.

Meta-Analysis
We conducted meta-analyses for binary classification tasks:
wheeze detection and abnormal lung sound detection. Sensitivity
and specificity were calculated based on the TP, TN, FP, and
FN extracted from the included studies. Sensitivity was defined
as the proportion of correctly identified abnormal lung sounds
(TP/[TP + FN]), and specificity as the proportion of correctly
identified normal lung sounds (TN/[TN + FP]). A pooled
analysis of sensitivity and specificity and their CI was conducted
with a bivariate metanalysis using a random-effects model [10].
The heterogeneity among the studies was established by the
Zhou and Dendukuri approach, with inconsistency values (I2)
greater than 50% being considered as moderate heterogeneity
and values above 75% indicating high heterogeneity.
Meta-analysis was conducted using the mada package in R
software (version 4.3.2; R Foundation for Statistical
Computing).

Quality Assessment
Researchers assessed the quality of the study based on the
revised tool for the Quality Assessment of Diagnostic Accuracy
Studies (QUADAS-2) [11]. Study quality was assessed based
on 2 factors: risk of bias and applicability. Risk of bias was high
if the systematic limitation in the study design or conduct was
likely to influence the results. Applicability referred to the extent
to which the study population, index test, or reference standard
was representative of the review question. Risk of bias was
evaluated in 4 domains: patient selection, index test, reference
standard, and flow and timing. Applicability was assessed in 3
domains: patient selection, index test, and reference standard.
The QUADAS-2 was modified to suit ML-based diagnostic
studies [12,13] (Table 1).
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Table 1. Domain details for risk of bias and applicability.

Review questionSignaling questionDomains

Risk of bias domains

—aPatient selection • Was a consecutive or random sample of patients or lung
sounds enrolled in the test set?

• Was a case-control design avoided?
• Did the study avoid inappropriate exclusions?

—Index test • Were the index test results independent of the patient
characteristics that may affect the reference standard?

• Was the performance metric evaluated in a prespecified
independent test set?

—Reference standard • Is the reference standard (physician labeling) likely to
correctly classify the target condition?

• Were the reference standard (physician labeling) labeled
without knowledge of the results of the index test?

—Flow and timing • Was there an appropriate interval between the index test
and reference standard?

• Did all the patients receive the same reference standard?

Applicability domains

—Patient selection • Pediatric patients that need diagnosis of respiratory
conditions.

—Index test • Machine learning model with lung sounds as input
and type of lung sound or lung pathology as output

—Reference standard • Labeling of physicians

aNot applicable.

Results

Systematic search from the 3 databases yielded a total of 2191
articles including conference abstracts, conference proceedings,
and journal papers. After removing duplicates and conducting
abstract screening, 126 full-text articles were assessed for
eligibility. A total of 55 studies were excluded based on criteria
such as inappropriate population, incorrect input data for
classifiers, missing results, or lack of original ML models. A
total of 41 studies were included in the final analysis [14-54]
(Figure 2).

The included studies spanned from the 1990s (2 studies),
through the 2010s (12 studies), to the 2020s (27 studies). A total
of 29 studies focused on classifying abnormal lung sounds; of
these, 15 aimed for binary classification and 14 pursued multiple
classification. In binary classification, wheeze detection was

the most researched topic of the studies. Twelve studies targeted
classifying the diagnosis, prognosis, or severity of specific lung
pathologies, such as pneumonia and asthma. Among these, 5
studies used binary classification, and 7 studies used multiple
classification approaches. Pneumonia was the most frequently
studied condition, followed by asthma. One study aimed to
classify the severity of cystic fibrosis (CF) based on lung sounds
(Table 2).

The performance metrics reported in these studies included
accuracy, sensitivity, specificity, F1-score, area under the
receiver operating characteristic curve, and other unique metrics
calculated using a combination of these metrics. Detailed
information on the included studies—such as the databases
used, sample sizes, tasks, training and test set sizes, feature
extraction methods, and ML models—are presented in
Multimedia Appendix 3 [14-54].
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Figure 2. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow diagram.

Table 2. Summary of included studies. Included studies are shown as reference numbers of the text.

Included studiesTaskData type and binary/multiple classes

Lung sound (n=10)

[14,18-20,22,24,27,30,32,34-36,47,48,53]Binary (n=15) • Wheeze (n=7)
• Abnormal (n=4)
• CASa (n=1)
• Crackle (n=1)
• Wheeze vs crackle (n=1)
• Dissimilar sounds (n=1)

[25,28,54,55]Multiple (n=4) • Normal, wheeze, rale, stridor, etc.

[16,37-40,42,45,46,49,50]Binary and multiple (n=10) • Adventitious detection, normal, wheeze, rale, stridor, etc.

Lung pathology (n=12)

[17,21,23,33,52]Binary (n=5) • Asthma (n=1)
• Bronchitis (n=2)
• Bronchiolitis (n=1)
• Pneumonia (n=2)

[15,26,29,31,41,43,44]Multiple (n=7) • Asthma status (n=1)
• Asthma/croup/pneumonia (n=2)
• CFb severity (n=1)
• Pneumonia/wheezing disorder/bronchiolitis (n=1)
• CAPc progression state (n=2)

aCAS: continuous adventitious sound.
bCF: cystic fibrosis.
cCAP: community-acquired pneumonia.

We extracted 2×2 confusion matrices (TP, FP, TN, and FN) for
binary classification studies. Of the 7 studies that examined
wheeze detection, 6 provided confusion matrix data (Table 3).

For abnormal lung sound detection, 7 of the 15 studies reported
confusion matrix data (Table 4).

The pooled sensitivity and specificity of wheeze detection
models were 0.902 (95% CI 0.726-0.970) and 0.955 (95% CI
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0.762-0.993), respectively. There was moderate between-study
heterogeneity (Figure 3). The pooled sensitivity of abnormal
lung sound detection models was 0.907 (95% CI 0.816-0.956)

and the specificity was 0.877 (95% CI 0.813-0.921). Low
heterogeneity was found (Figure 4).

Table 3. Confusion matrix of studies on wheeze detection.

False negative (FN)True negative (TN)False positive (FP)True positive (TP)Author (year)

311023864Forkheim et al (1995) [14]

125722268Mazic et al (2015) [19]

N/AN/AN/AN/AaMilicevic et al (2016) [20]

262130Kuo et al (2021) [30]

20179583Kim et al (2022) [34]

50502142401Nguyen et al (2022) [36]

946838Park et al (2023) [48]

aNot available.

Table 4. Confusion matrix of studies on abnormal lung sound detection.

False negative (FN)True negative (TN)False positive (FP)True positive (TP)Author (year)

N/AN/AN/AN/AaEmmanouilidou et al (2012) [16]

06710671Khan et al (2017) [21]

N/AN/AN/AN/AEmmanouilidou et al (2018) [22]

N/AN/AN/AN/ALiu et al (2019) [27]

94822178295Zhang et al (2022) [37]

221295103310Li et al (2022) [38]

N/AN/AN/AN/AZhang et al (2022) [39]

N/AN/AN/AN/ABabu et al (2022) [40]

4759281385Hu et al (2023) [42]

N/AN/AN/AN/ANgo et al (2023) [45]

61889151328Ngo et al (2023) [46]

N/AN/AN/AN/APessoa et al (2023) [49]

N/AN/AN/AN/ATaghiBeyglou et al (2024) [50]

320318Chowdhury et al (2024) [51]

69052393664859Crisdayanti et al (2024) [52]

aNot available.
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Figure 3. Summary receiver operating characteristic curve for wheeze detection machine learning models. The solid black line represents the estimated
summary receiver operating characteristic curve. The green triangle marks the pooled sensitivity and specificity estimated from the bivariate meta-analysis,
with the 95% CI ellipse around it. Red dots represent the sensitivity and specificity of individual studies. DOR: diagnostic odds ratio.

Figure 4. Summary receiver operating characteristic curve for abnormal lung sound detection machine learning models. The solid black line represents
the estimated summary receiver operating characteristic curve. The green triangle marks the pooled sensitivity and specificity estimated from the bivariate
meta-analysis, with the 95% CI ellipse around it. Red dots represent the sensitivity and specificity of individual studies. DOR: diagnostic odds ratio.

A total of 29 distinct databases were identified across the
included studies (Table 5). Eight databases labeled lung
pathologies including 6 studies that labeled a single lung
pathology (pneumonia in 2 studies, asthma in 2 studies,
bronchitis in 1 study, and CF in 1 study) and 2 studies that
labeled multiple lung pathologies. Seventeen studies labeled
abnormal lung sounds as follows: 6 studies with binary labels
of wheeze/normal or wheeze/nonwheeze, 3 studies with binary
labels of abnormal (or adventitious)/normal, and 8 studies with
multiple abnormal lung sound labels (eg, wheeze, crackle, and
stridor) labels. Labeling methods or personnel were specified
in 19 databases and not specified in 6. Details of each database

are available in Multimedia Appendix 4 [14-29,31-37,
39-41,43-46,48-54].

The most used database was Shanghai Pediatric Respiratory
Sound Database, a Chinese database collected from Shanghai
University Hospital. The database was used for a challenge in
the IEEE BIOCAS 2022 and again in 2023 with an additional
test set [37]. This is the only open-source pediatric lung sound
database available. Another public database, the International
Conference on Biomedical and Health Informatics 2017 includes
only a small number of pediatric participants [55]. The
International Conference on Biomedical and Health Informatics
2017 database was used for pretraining of models or for external
validation in some studies.

J Med Internet Res 2025 | vol. 27 | e66491 | p. 8https://www.jmir.org/2025/1/e66491
(page number not for citation purposes)

Park et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 5. Summary of databases used in reviewed studies.

StudiesAvailabilityLabel typeSizeDatabase

[32,35,37,39,40,45,46,49,50,53,54]PublicLung sound292 subjectsSPRSounda

[27,48,52,53]PublicLung sound49 subjectsICBHIb

[25,31]PrivateDisorder12 recordingsLiu et al (2019)

[43,44]PrivateDisorder198 subjectsCCAP-LSDc

[14]PrivateLung sound710 patternsForkheim et al (1995)

[15]PrivateDisorder60 subjectsRietveld et al (1999)

[16]PrivateLung sound28 recordingsEmmanouilidou et al (2012)

[17]PrivateDisorder40 subjectsKhan et al (2012)

[18]PrivateLung sound21 subjectsJin et al (2014)

[19]PrivateLung sound16 subjectsMazic et al (2015)

[20]PrivateLung sound863 samplesMilicevic et al (2016)

[21]PrivateLung sound1157 subjectsPERCH

[22]PrivateLung sound254 soundsKhan et al (2017)

[23]PrivateDisorder48 patientsMohamed et al (2018)

[24]PrivateLung sound446 soundsGouda et al (2019)

[25]PrivateLung sound50 subjects (test set)Grzywalski et al (2019)

[27]PrivateLung sound222 subjectsLiu et al (2019)

[26]PrivateLung sound116 childrenKotb et al (2020)

[27]PrivateDisorder209 subjectsKarimizadeh et al (2021)

[28]PrivateLung sound94 subjectsKuo et al (2021)

[32]PrivateLung sound73 samplesCheng et al (2021)

[33]PrivateDisorder1118 recordsGelman et al (2022)

[34]PrivateLung sound76 subjectsKim et al (2022)

[36]PrivateLung sound1095 recordingsNguyen et al (2022)

[41]PrivateDisorder572 subjectsDeepBreath

[48]PrivateLung sound1112 clipsPark et al (2023)

[29]PublicLung sound>50 recordingsR.A.L.E.

[51]PrivateDisorder19 toddlersChowdhury et al (2024)

[52]PrivateLung sound675 patientsCrisdayanti et al (2024)

aSPRSound: Shanghai Pediatric Respiratory Sound Database.
bICBHI: International Conference on Biomedical and Health Informatics.
cCCAP-LSD: Cystic Fibrosis Center for Advanced Pediatric Learning and Study Data.

Various feature extraction methods were used (Table 6). The
most frequently used method was Mel-frequency cepstral
coefficients (MFCC), which was used in 11 studies. MFCC
captures the overall shape of the spectral envelope in a
compressed form across the Mel scale, a perceptual frequency
scale that reflects human auditory sensitivity. The second most
widely used method was the (log) Mel-spectrogram, which was
applied in 9 studies. This technique provides a visual
representation of an audio signal’s frequency content over time,
with frequencies converted to the Mel scale. Other Fourier

transform-based methods, including short-time Fourier transform
(STFT) and spectral features derived from the Fourier spectrum,
were used to analyze the frequency content of the signals.
Statistical features such as kurtosis, sample entropy, and
time-frequency domain characteristics were also used in some
studies. Other techniques such as wavelet transformations
(continuous and discrete), cochleogram, and time-varying linear
predictive coding were also used to extract features from the
lung sound recordings.
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Table 6. Feature extraction methods.

StudiesFeaturesFeature extraction

[14,15,21,24,25,35,36,38,49,54]FTa decomposes a signal into its frequency components, assuming the frequency is
stationary throughout the entire time sequence. STFT analyzes how frequencies change
over time by dividing the signal into overlapping short frames and applying FT to each
frame. This provides a time-frequency representation, assuming stationarity within
each frame. A spectrogram is a visual representation of the STFT that displays the
magnitude or power as a function of time and frequency, providing a time-frequency
representation of the signal.

Short-time Fourier transform
(STFT) or spectrogram

[33]Derived from the Fourier spectrum of respiratory sounds, the process involves convert-
ing the audio into a time series, applying the FT, and deriving features like spectral
bandwidth, centroid, roll-off, and chroma.

Fourier transform-based
spectral feature

[23,27,34,37,41,43,44,50,52]A visual representation of an audio signal’s frequency content over time, where the
frequencies are converted to the Mel scale, which is based on human perception of
pitch. It shows how the energy of different frequency bands evolves over time. The
log Mel-spectrogram is computed by taking the logarithm of the Mel-spectrogram
values, which helps to compress the dynamic range and emphasize lower energies.

(log) Mel-spectrogram

[17,19,20,24,26,28,37,39,42,48,51]MFCC are features derived by applying a Discrete Cosine Transform to the log Mel-
spectrogram, capturing key spectral characteristics of an audio signal, often used in
speech and audio recognition.

Mel-frequency cepstral coef-
ficients (MFCC)

[18-20,29,30,32,39]A set of features that capture time-domain, frequency-domain, and complexity aspects
of breath sounds, including kurtosis, sample entropy, lung sound power ratio, respira-
tory rate, breathing cycle metrics, peak frequency, and wheezing characteristics, pro-
viding key insights for diagnosing respiratory diseases.

Statistics

[45,46]Technique to analyze the frequency content of a signal over time using wavelets—small,
localized functions that can stretch or compress to capture details at various scales.
The CWT provides good time resolution for high-frequency components and good
frequency resolution for low-frequency components, making it suitable for analyzing
nonstationary signals.

Continuous wavelet transfor-
mation (CWT)

[24,47]A sampled version of the CWT that selects scales and positions based on powers of
2. The signal is passed through a series of high-pass and low-pass filters, down-sampled
by a factor of 2 at each level, and decomposed into wavelet coefficients representing
different frequency bands and time scales.

Discrete wavelet transforma-
tion

[22]A time-frequency representation of an audio signal that mimics human auditory pro-
cessing. Sound signal is passed through bandpass filters based on the Equivalent
Rectangular Bandwidth scale, simulating the cochlear frequency resolution, and
smoothed and compressed, providing a biologically-inspired representation of the
signal’s spectral content.

Cochleogram

[31]A feature extraction technique for nonstationary breath sounds, where the signal is
modeled as a linear combination of past samples with time-varying filter coefficients.
Unlike traditional LPC, TVLPC allows these coefficients to change over time by ex-
pressing them as a linear combination of basis functions, capturing the dynamic
spectral characteristics essential for accurately classifying respiratory conditions.

Time-varying linear predic-
tive coding (TVLPC)

aFT: Fourier Transform.

A wide range of ML models were used in the included studies
for classifying lung sounds and diagnosing respiratory conditions
(Table 7). Convolutional neural networks (CNNs) were the most
frequently used, featured in 12 studies, in combination with
other architectures like recurrent neural networks in 2 studies.
Artificial neural networks were also popular, and were used in
10 studies. Residual network (ResNet), a deep CNN architecture
with residual connections, was used in 6 studies. Support vector

machines (SVMs), another widely used model, was used in 8
studies for optimizing decision boundaries. Other models
explored included transformer, hidden Markov models, k-nearest
neighbors, ensemble models, and probabilistic classifiers like
Naïve Bayes. The choice of model depended on factors such as
the nature of the data, the complexity of the classification task,
and desired performance metrics.
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Table 7. Summary of the machine learning models used by studies in this review.

StudiesFeaturesModel name

[14-16,24-27,29,30,33,44]Comprised of interconnected nodes arranged in layers. Data flows from the input
layer, through hidden layers, to the output layer. Nodes are connected by weighted
links that are tuned during training.

Artificial neural network

[23,27,34-36,40,41,47,49,51,52,54]A type of neural network optimized for processing grid-like data such as images. It
uses convolutional layers to extract spatial features and pooling layers to reduce dimen-
sionality.

Convolutional neural net-
work (CNN)

[35,39,40,42,43,47]A deep CNN architecture that introduces residual connections, which skip one or more
layers and alleviate the vanishing gradient problem. This enables the training of very
deep networks.

Residual Network (ResNet)

[15,17-22,32,48]A discriminative classifier that constructs a hyperplane or set of hyperplanes in a high-
dimensional space to maximize the margin between classes. It aims to find the optimal
decision boundary.

Support vector machine
(SVM)

[43,44]A hybrid architecture that combines the spatial feature extraction capabilities of CNNs
with the temporal modeling abilities of RNNs. This allows for capturing both spatial
and sequential patterns in data.

CNN + recurrent neural net-
works (RNNs)

[28,31]A probabilistic model that assumes the system being modeled is a Markov process
with hidden states. It consists of a sequence of state variables and observed variables,
with transitions between states governed by probability distributions.

Hidden Markov model

[21]A nonparametric method that classifies data points based on the majority class among
their K nearest neighbors in the feature space. It assigns unlabeled examples to the
class most common among the K closest labeled instances.

K-nearest neighbors (KNN)

[39]A hierarchical ensemble architecture with 2 levels of model combination. Level 1
separates models by gender to capture data heterogeneity. It trains specialized models
for each gender group. Level 2 trains multiple diverse models within each gender
group using AutoGluon, an AutoML framework. These multiple models are strategi-
cally generated and combined to solve a computational intelligence problem.

Two-level ensemble model

[37]A probabilistic classifier based on applying Bayes’ theorem with strong independence
assumptions between features. It calculates the probability of each class given the
feature values and predicts the class with the highest probability.

Naïve Bayes

[53]A deep learning architecture that uses self-attention mechanisms to process sequential
data. It replaces traditional recurrent connections with attention layers that can directly
model relationships between all positions in a sequence, allowing parallel processing
and better handling of long-range dependencies.

Transformer

Quality assessment of the included studies identified several
areas of potential bias. Seventeen studies showed a high risk of
bias in patient selection, mainly due to insufficient description
of the consecutive or random sampling process for the test set.
Index test domain was marked as high risk in 11 studies, mainly
due to the lack of an independent test set. Studies that used
k-fold cross-validation or leave-one-out method, ensuring no
overlap of samples from the same subject in both the training
and validation sets, were considered low risk. One study
included data beyond lung sounds in the classification model,

making the index test results dependent on patient
characteristics. Studies that did not specify the test set were
marked as unknown. Regarding reference standards, labels
assigned by at least 2 independent personnel or based on
objective measures were considered reliable. A total of 8 studies
were marked as high risk, while 7 studies that did not describe
their labeling methods were marked as unknown. Most studies
did not have issues with flow and timing (Figure 5 and
Multimedia Appendix 5 [14-54]).
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Figure 5. Quality assessment summary plot for risk of bias (top) and applicability concerns (bottom). Quality assessment was conducted with a modified
version of the Quality Assessment of Diagnostic Accuracy Studies-2 instrument.

Discussion

Principal Findings

Overview
This systematic literature review of studies of lung sound
analysis highlighted the feasibility of AI models in classifying
pediatric lung sounds with moderate to high accuracy. There
has been a substantial increase in the number of studies in recent
years, especially in the 2020s, reflecting advancements in
computational power, availability of large datasets, and
improvements in ML techniques. This review included 35
studies that varied in classification tasks, sample sizes, age
ranges, lung sound databases used, and model evaluation
metrics.

Classification Tasks and Challenges
Classification tasks in respiratory sound analysis generally
involve distinguishing between different lung pathologies and
lung sounds. While the ultimate goal of respiratory physical
examination, including auscultation, is to reach a clinical
diagnosis, labeling lung sounds based on respiratory diagnoses
presents significant challenges, particularly in children. Many
respiratory conditions overlap; for example, bronchiolitis and
pneumonia can coexist in a child, or an asthma exacerbation
may be triggered by a respiratory infection such as viral
pneumonia.

Since no single diagnostic test can definitively differentiate
between all overlapping conditions, objective criteria are often
used to standardize labeling. For instance, pneumonia diagnosis

may rely on chest x-ray findings as part of an operational
definition. Similarly, when assessing disease severity, physicians
often use clinical scoring systems such as the
community-acquired pneumonia score for pneumonia [56]. In
some cases, more objective measures are available, such as
using forced expiratory volume in one second % predicted to
evaluate the severity of CF [29]. These standardized approaches
help ensure more consistent and objective labeling in
classification tasks.

Evaluation Methods and Performance Metrics
Although some studies had a separate external validation set or
a prospective validation set, in many cases, a separate test set
was not specified, limiting the reliability of their results.
Furthermore, in many studies, not all the necessary evaluation
metrics were specified. According to the Standards for Reporting
of Diagnostic Accuracy Studies (STARD) 2015 guidelines [57],
cross-tabulation of the index test results (or their distribution)
by the results of the reference standard should be provided.
STARD for AI-centered diagnostic tests (STARD-AI) is still
under development [58], but a confusion matrix is needed to
give a fair evaluation of an AI-centered diagnostic test, as a
single performance metric can be influenced by not only the
performance of the index test but also the distribution of the
samples with and without the diagnosis. If the study failed to
provide a confusion matrix, we reconstituted one from the
distribution of the test population of the reference standard, and
sensitivity and specificity. However, in our review, we have
found that many tests did not provide enough metrics to form
a confusion matrix.
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Dataset Quality and Availability
Significant variation was observed in the quality and quantity
of the datasets used across studies. Most studies used small,
institution-specific datasets, limiting the generalizability of the
findings. Additionally, there was a lack of standardized data
collection and annotation protocols. Additionally, there was a
lack of standardized data collection and annotation protocols.
Particularly, the stethoscopes used to collect data varied widely,
limiting their generalizability. The only publicly available
pediatric database, Shanghai Pediatric Respiratory Sound
Database, came from a single center [37]. A few multicenter
datasets were used in different studies, but the datasets were
not available for public use. To develop a more robust and
generalizable pediatric lung sound analysis model, a large-scale
multicenter pediatric lung sound database is crucial.

Feature Extraction Methods
The most frequently used feature extraction methods in the
reviewed studies were MFCC, Mel-spectrogram, and Fourier
transform-based methods. Mel-spectrogram and STFT are both
time-frequency representations of an audio signal, providing
information about the signal’s frequency content over time [59].
They involve dividing the signal into short frames and applying
the Fourier transform to each frame. However, while STFT
provides a linear frequency scale, Mel-spectrogram applies a
Mel-scale filter bank based on human perception of pitch. This
emphasizes the lower frequencies that humans are more sensitive
to, making Mel-spectrogram more perceptually relevant. MFCC
is derived from the Mel-spectrogram by applying additional
processing steps, such as taking the logarithm and applying the
discrete cosine transform, resulting in a compressed feature
vector that captures the overall shape of the spectral envelope
[60]. In adult-based lung sound classification studies, new
features such as Chromagram, representation of the intensity
of different pitch classes (chromas) over time, irrespective of
the octave, have been explored [61].

ML Models
The reviewed studies used a diverse range of ML models for
classifying lung sounds and diagnosing respiratory conditions.
CNN and its variants, such as CNN combined with recurrent
neural network and ResNet, emerged as the most popular choice,
with a total of 17 studies adopting these architectures. The
prevalence of CNN-based models can be attributed to their
ability to automatically learn and extract relevant features from
the input data, making them well-suited for processing complex
signals such as lung sounds. ResNet, a deep CNN architecture
with residual connections, allows for the training of much deeper
networks without the vanishing gradient problem, enabling the
network to capture complex hierarchical features and
dependencies in lung sound data [62]. Apart from neural
network-based models, SVM was also widely used, being used
in 6 studies. SVMs are known for their ability to find optimal
decision boundaries in high-dimensional feature spaces, making
them effective in classifying lung sounds based on extracted
features [63]. While other models such as Hidden Markov
Models, k-nearest neighbors, ensemble models, and probabilistic
classifiers were explored in some studies, the dominance of
CNN-based architectures, particularly ResNet, and SVMs

underscores their effectiveness in accurately classifying lung
sounds and diagnosing respiratory conditions.

Comparison With Prior Work
There is a limited number of reviews on lung sound analysis
using ML [13,64-66]. Compared with prior work in adult
populations, this study provides a unique focus on pediatric
datasets, where challenges such as overlapping conditions and
smaller dataset sizes are more pronounced. While a recent
scoping review on pediatric asthma diagnosis using lung sound
analysis was published, this study expands the scope by
including various lung pathologies and sound classification
tasks [67].

Strengths
Our systematic review and meta-analysis provide a
comprehensive review of ML used in pediatric lung sound
analysis, offering an evidence base for future research in this
field. The study synthesizes findings from multiple studies,
identifying common trends, challenges, and gaps in research.
Additionally, this review emphasizes the need for standardized
reporting guidelines and the development of multicenter
pediatric lung sound datasets.

Limitations
The study has some limitations. First, we have only searched
for articles in English. Second, due to the heterogeneity of the
classification tasks of the included studies and the lack of
essential results in some studies, meta-analysis was possible for
only parts of the data. Third, the lack of standard guidelines in
AI-centered diagnostic studies undermines the objectivity of
quality assessment in our study. To address this limitation, we
have made our best efforts to modify the QUADAS-2 to fit
AI-centered diagnostics. These weaknesses may be overcome
in the future when STARD-AI is published and upcoming
studies conform to this guideline [58], and when QUADAS-AI
is also published for evaluating these studies [68]. In the
meanwhile, since AI in medical imaging is the leading field of
AI-based diagnostics, we can draw from existing guidelines on
reporting AI in medical imaging [69].

Future Directions
While ML models have shown high accuracy in the
classification of lung sounds, several challenges remain in
implementing the models into clinical practice. First, the
black-box nature of ML models limits clinical interpretability.
Explainable AI techniques that provide visual insights into the
model would be useful for clinical decision-making and sharing
information with patients. Second, for the practical use of these
models, stethoscopes equipped with real-time analysis models
need to be developed. Technical issues must be resolved to
implement lung sound classification models in clinical practice
and electronic health record systems. Last, the clinical value of
these studies has not been shown in any studies. Clinical trials
to validate the efficacy of ML models in clinical settings, such
as better diagnostic accuracy or faster decision-making in the
clinic, should be implemented according to guidelines [70].
Before these models are used in clinical and household settings,
ethical and privacy issues must be addressed [71,72].
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In conclusion, pediatric lung sound analysis can be performed
with high accuracy. However, due to the lack of standard
guidelines, there is significant heterogeneity in the reported
studies. Standardization in this emerging field is necessary.
Future research should prioritize robust designs with external
validation, detailed descriptions of model development, and

comprehensive performance results. With the development of
real-time analysis tools that can be deployed in various clinical
settings, pediatric lung sound analysis has the potential to
improve respiratory care, providing timely and accurate
diagnoses, and ultimately enhancing clinical outcomes for
pediatric patients.

Acknowledgments
JSP and SYP contributed equally as co-first authors. KK and DIS contributed equally as co-corresponding authors. We would
like to thank Bo-Kyeong Kim, medical librarian at the Medical Library of Seoul National University, for her invaluable assistance
in conducting the systematic literature search. This work was supported by the National Research Foundation of Korea (NRF)
grant funded by the Korean government (MSIT) (number RS-2024-00343860). No generative AI tools were used in the writing
or data extraction of this manuscript.

Data Availability
The data supporting this systematic review are extracted from publicly available studies included in the review.

Authors' Contributions
JSP, SYP, JWM, KK, and DIS were responsible for the concept and design. Data collection and curation were conducted by JSP
and SYP. Statistical analysis was performed by JSP, SYP and JWM, while data interpretation was carried out by JSP, SYP, KK,
and DIS. JSP, SYP and JWM drafted the manuscript, and KK and DIS revised it for critical content. Supervision was provided
by KK and DIS. All authors reviewed and approved the final version of the manuscript.

Conflicts of Interest
None declared.

Multimedia Appendix 1
Preferred Reporting Items for Systematic Reviews and Meta-Analysis for Diagnostic Test Accuracy Studies (PRISMA-DTA)
checklist.
[DOCX File , 24 KB-Multimedia Appendix 1]

Multimedia Appendix 2
Database and search queries used in this study.
[DOCX File , 27 KB-Multimedia Appendix 2]

Multimedia Appendix 3
Characteristics of studies included in this review on pediatric lung sound analysis.
[DOCX File , 32 KB-Multimedia Appendix 3]

Multimedia Appendix 4
Details of databases used by studies included in this review on pediatric lung sound analysis.
[DOCX File , 26 KB-Multimedia Appendix 4]

Multimedia Appendix 5
Quality assessment results of studies included in this review.
[DOCX File , 20 KB-Multimedia Appendix 5]

References

1. Liu L, Oza S, Hogan D, Chu Y, Perin J, Zhu J, et al. Global, regional, and national causes of under-5 mortality in 2000-15:
an updated systematic analysis with implications for the sustainable development goals. Lancet. 2016;388(10063):3027-3035.
[FREE Full text] [doi: 10.1016/S0140-6736(16)31593-8] [Medline: 27839855]

2. Nair H, Simões EAF, Rudan I, Gessner B, Azziz-Baumgartner E, Zhang J, et al. Severe Acute Lower Respiratory Infections
Working Group. Global and regional burden of hospital admissions for severe acute lower respiratory infections in young

J Med Internet Res 2025 | vol. 27 | e66491 | p. 14https://www.jmir.org/2025/1/e66491
(page number not for citation purposes)

Park et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=jmir_v27i1e66491_app1.docx&filename=482eeded6da020a5c88c2b15fb1016a8.docx
https://jmir.org/api/download?alt_name=jmir_v27i1e66491_app1.docx&filename=482eeded6da020a5c88c2b15fb1016a8.docx
https://jmir.org/api/download?alt_name=jmir_v27i1e66491_app2.docx&filename=dda980dc26c68fd3a461c2d93c351597.docx
https://jmir.org/api/download?alt_name=jmir_v27i1e66491_app2.docx&filename=dda980dc26c68fd3a461c2d93c351597.docx
https://jmir.org/api/download?alt_name=jmir_v27i1e66491_app3.docx&filename=d89b414135a353cff522b8ff89d2a576.docx
https://jmir.org/api/download?alt_name=jmir_v27i1e66491_app3.docx&filename=d89b414135a353cff522b8ff89d2a576.docx
https://jmir.org/api/download?alt_name=jmir_v27i1e66491_app4.docx&filename=355f1798758587fe8610bd93d05f549f.docx
https://jmir.org/api/download?alt_name=jmir_v27i1e66491_app4.docx&filename=355f1798758587fe8610bd93d05f549f.docx
https://jmir.org/api/download?alt_name=jmir_v27i1e66491_app5.docx&filename=3cc990d070b6e1d7b855f8d0bdd63039.docx
https://jmir.org/api/download?alt_name=jmir_v27i1e66491_app5.docx&filename=3cc990d070b6e1d7b855f8d0bdd63039.docx
https://linkinghub.elsevier.com/retrieve/pii/S0140-6736(16)31593-8
http://dx.doi.org/10.1016/S0140-6736(16)31593-8
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27839855&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


children in 2010: a systematic analysis. Lancet. 2013;381(9875):1380-1390. [FREE Full text] [doi:
10.1016/S0140-6736(12)61901-1] [Medline: 23369797]

3. Aviles-Solis JC, Vanbelle S, Halvorsen PA, Francis N, Cals JWL, Andreeva EA, et al. International perception of lung
sounds: a comparison of classification across some European borders. BMJ Open Respir Res. 2017;4(1):e000250. [FREE
Full text] [doi: 10.1136/bmjresp-2017-000250] [Medline: 29435344]

4. Ramanathan A, Zhou L, Marzbanrad F, Roseby R, Tan K, Kevat A, et al. Digital stethoscopes in paediatric medicine. Acta
Paediatr. 2019;108(5):814-822. [doi: 10.1111/apa.14686] [Medline: 30536440]

5. Ellington LE, Emmanouilidou D, Elhilali M, Gilman RH, Tielsch JM, Chavez MA, et al. Developing a reference of normal
lung sounds in healthy Peruvian children. Lung. 2014;192(5):765-773. [FREE Full text] [doi: 10.1007/s00408-014-9608-3]
[Medline: 24943262]

6. Kim Y, Hyon Y, Jung SS, Lee S, Yoo G, Chung C, et al. Respiratory sound classification for crackles, wheezes, and rhonchi
in the clinical field using deep learning. Sci Rep. 2021;11(1):17186. [FREE Full text] [doi: 10.1038/s41598-021-96724-7]
[Medline: 34433880]

7. Zhu H, Lai J, Liu B, Wen Z, Xiong Y, Li H, et al. Automatic pulmonary auscultation grading diagnosis of Coronavirus
disease 2019 in China with artificial intelligence algorithms: a cohort study. Comput Methods Programs Biomed.
2022;213:106500. [FREE Full text] [doi: 10.1016/j.cmpb.2021.106500] [Medline: 34768234]

8. Lapteva EA, Kharevich ON, Khatsko VV, Voronova NA, Chamko MV, Bezruchko IV, et al. Automated lung sound analysis
using the Lungpass platform: a sensitive and specific tool for identifying lower respiratory tract involvement in COVID-19.
Eur Respir J. 2021;58(6):2101907. [FREE Full text] [doi: 10.1183/13993003.01907-2021] [Medline: 34531278]

9. McInnes MDF, Moher D, Thombs BD, McGrath TA, Bossuyt PM, The PRISMA-DTA Group, et al. Preferred reporting
items for a systematic review and meta-analysis of diagnostic test accuracy studies: the PRISMA-DTA statement. JAMA.
2018;319(4):388-396. [doi: 10.1001/jama.2017.19163] [Medline: 29362800]

10. Reitsma JB, Glas AS, Rutjes AW, Scholten RJ, Bossuyt PM, Zwinderman AH. Bivariate analysis of sensitivity and specificity
produces informative summary measures in diagnostic reviews. J Clin Epidemiol. 2005;58(10):982-990. [doi:
10.1016/j.jclinepi.2005.02.022] [Medline: 16168343]

11. Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, et al. QUADAS-2 Group. QUADAS-2: a revised
tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med. 2011;155(8):529-536. [FREE Full text]
[doi: 10.7326/0003-4819-155-8-201110180-00009] [Medline: 22007046]

12. Jayakumar S, Sounderajah V, Normahani P, Harling L, Markar SR, Ashrafian H, et al. Quality assessment standards in
artificial intelligence diagnostic accuracy systematic reviews: a meta-research study. NPJ Digit Med. 2022;5(1):11. [FREE
Full text] [doi: 10.1038/s41746-021-00544-y] [Medline: 35087178]

13. Garcia-Mendez JP, Lal A, Herasevich S, Tekin A, Pinevich Y, Lipatov K, et al. Machine learning for automated classification
of abnormal lung sounds obtained from public databases: a systematic review. Bioengineering (Basel). 2023;10(10):1155.
[FREE Full text] [doi: 10.3390/bioengineering10101155] [Medline: 37892885]

14. Forkheim KE, Scuse D, Pasterkamp H. A comparison of neural network models for wheeze detection. 1995. Presented at:
IEEE WESCANEX 95. Communications, Power, and Computing. Conference Proceedings; 1995 May 15-16; Winnipeg,
MB, Canada. [doi: 10.1109/WESCAN.1995.493973]

15. Rietveld S, Oud M, Dooijes E. Classification of asthmatic breath sounds: preliminary results of the classifying capacity of
human examiners versus artificial neural networks. Comput Biomed Res. 1999;32(5):440-448. [doi: 10.1006/cbmr.1999.1522]
[Medline: 10529301]

16. Emmanouilidou D, Patil K, West J, Elhilali M. A multiresolution analysis for detection of abnormal lung sounds. Annu Int
Conf IEEE Eng Med Biol Soc. 2012;2012:3139-3142. [FREE Full text] [doi: 10.1109/EMBC.2012.6346630] [Medline:
23366591]

17. Khan SI, Jawarkar NP, Ahmed V. Cell phone based remote early detection of respiratory disorders for rural children using
modified stethoscope. 2012. Presented at: International Conference on Communication Systems and Network Technologies;
2012 May 11-13; Rajkot, Gujarat, India.

18. Jin F, Sattar F, Goh D. New approaches for spectro-temporal feature extraction with applications to respiratory sound
classification. Neurocomputing. 2014;123:362-371. [doi: 10.1016/j.neucom.2013.07.033]

19. Mazić I, Bonković M, Džaja B. Two-level coarse-to-fine classification algorithm for asthma wheezing recognition in
children's respiratory sounds. Biomed Signal Process Control. 2015;21:105-118. [doi: 10.1016/j.bspc.2015.05.002]

20. Milicevic M, Mazic I, Bonkovic M. Asthmatic wheezes detection - what contributes the most to the role of MFCC in
classifiers accuracy? Int J Biol Biomed Eng. 2016;10:176-182. [FREE Full text]

21. Khan SI, Ahmed V, Jawarkar NP. Application of signal processing techniques for preliminary detection of adventitious
lung sounds in paediatric population using electronic stethoscope. 2017. Presented at: International Conference on Big Data
Analytics and Computational Intelligence (ICBDAC); 2017 March 23-25; Chirala, Andhra Pradesh, India.

22. Emmanouilidou D, McCollum ED, Park DE, Elhilali M. Computerized lung sound screening for pediatric auscultation in
noisy field environments. IEEE Trans Biomed Eng. 2018;65(7):1564-1574. [FREE Full text] [doi:
10.1109/TBME.2017.2717280] [Medline: 28641244]

J Med Internet Res 2025 | vol. 27 | e66491 | p. 15https://www.jmir.org/2025/1/e66491
(page number not for citation purposes)

Park et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

https://linkinghub.elsevier.com/retrieve/pii/S0140-6736(12)61901-1
http://dx.doi.org/10.1016/S0140-6736(12)61901-1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23369797&dopt=Abstract
https://bmjopenrespres.bmj.com/lookup/pmidlookup?view=long&pmid=29435344
https://bmjopenrespres.bmj.com/lookup/pmidlookup?view=long&pmid=29435344
http://dx.doi.org/10.1136/bmjresp-2017-000250
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29435344&dopt=Abstract
http://dx.doi.org/10.1111/apa.14686
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30536440&dopt=Abstract
https://europepmc.org/abstract/MED/24943262
http://dx.doi.org/10.1007/s00408-014-9608-3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24943262&dopt=Abstract
https://doi.org/10.1038/s41598-021-96724-7
http://dx.doi.org/10.1038/s41598-021-96724-7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34433880&dopt=Abstract
https://europepmc.org/abstract/MED/34768234
http://dx.doi.org/10.1016/j.cmpb.2021.106500
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34768234&dopt=Abstract
https://publications.ersnet.org/lookup/pmid/34531278
http://dx.doi.org/10.1183/13993003.01907-2021
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34531278&dopt=Abstract
http://dx.doi.org/10.1001/jama.2017.19163
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29362800&dopt=Abstract
http://dx.doi.org/10.1016/j.jclinepi.2005.02.022
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16168343&dopt=Abstract
https://www.acpjournals.org/doi/abs/10.7326/0003-4819-155-8-201110180-00009?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub  0pubmed
http://dx.doi.org/10.7326/0003-4819-155-8-201110180-00009
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22007046&dopt=Abstract
https://doi.org/10.1038/s41746-021-00544-y
https://doi.org/10.1038/s41746-021-00544-y
http://dx.doi.org/10.1038/s41746-021-00544-y
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35087178&dopt=Abstract
https://www.mdpi.com/resolver?pii=bioengineering10101155
http://dx.doi.org/10.3390/bioengineering10101155
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=37892885&dopt=Abstract
http://dx.doi.org/10.1109/WESCAN.1995.493973
http://dx.doi.org/10.1006/cbmr.1999.1522
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10529301&dopt=Abstract
https://europepmc.org/abstract/MED/23366591
http://dx.doi.org/10.1109/EMBC.2012.6346630
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23366591&dopt=Abstract
http://dx.doi.org/10.1016/j.neucom.2013.07.033
http://dx.doi.org/10.1016/j.bspc.2015.05.002
http://ijdri.com/ijbbe/2016-2/
https://europepmc.org/abstract/MED/28641244
http://dx.doi.org/10.1109/TBME.2017.2717280
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28641244&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


23. Mohamed-Rida B, Starkov P, Manzano S, Hugon F, Solà CJ, Gervaix A. Diagnostic performance of an unsupervised
electronic stethoscope for community-acquired childhood pneumonia in a paediatric emergency department: a feasibility
case-control study. Swiss Med Wkly. 2018;147:2S. [FREE Full text]

24. Gouda A, Shehaby S, Diaa N, Abougabal M. Classification techniques for diagnosing respiratory sounds in infants and
children. 2019. Presented at: IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC); 2019
January 07-09; Las Vegas, NV, USA.

25. Grzywalski T, Piecuch M, Szajek M, Bręborowicz A, Hafke-Dys H, Kociński J, et al. Practical implementation of artificial
intelligence algorithms in pulmonary auscultation examination. Eur J Pediatr. 2019;178(6):883-890. [FREE Full text] [doi:
10.1007/s00431-019-03363-2] [Medline: 30927097]

26. Liu L, Li W, Jiang C. Breath sounds recognition and classification for respiration system diseases. 2019. Presented at: ICC
2019 - 2019 IEEE International Conference on Communications (ICC); 2019 May 20-24; Shanghai, China.

27. Liu R, Cai S, Zhang K, Hu N. Detection of adventitious respiratory sounds based on convolutional neural network. 2019.
Presented at: International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS); 2019 November
21-24; Shanghai, China.

28. Kotb MA, Elmahdy HN, Seif El Dein HM, Mostafa FZ, Refaey MA, Rjoob KWY, et al. The machine learned stethoscope
provides accurate operator independent diagnosis of chest disease. Med Devices (Auckl). 2020;13:13-22. [FREE Full text]
[doi: 10.2147/MDER.S221029] [Medline: 32158281]

29. Karimizadeh A, Vali M, Modaresi M. Multichannel lung sound analysis to detect severity of lung disease in cystic fibrosis.
Biomed Signal Process Control. 2021;64:102266. [doi: 10.1016/j.bspc.2020.102266]

30. Kuo H, Lin B, Wang Y, Lin B. Development of automatic wheeze detection algorithm for children with asthma. IEEE
Access. 2021;9:126882-126890. [doi: 10.1109/access.2021.3111507]

31. Liu L, Li W, Jiang C. Time-varying respiratory feature recognition and classification for respiration health and disease
screening in children. 2021. Presented at: IEEE International Conference on Systems, Man, and Cybernetics (SMC); 2021
October 17-20; Melbourne, Australia.

32. Cheng ZR, Zhang H, Thomas B, Tan YH, Teoh OH, Pugalenthi A. Assessing the accuracy of artificial intelligence enabled
acoustic analytic technology on breath sounds in children. J Med Eng Technol. 2022;46(1):78-84. [doi:
10.1080/03091902.2021.1992520] [Medline: 34730469]

33. Gelman A, Furman E, Kalinina N, Malinin S, Furman G, Sheludko V, et al. Computer-aided detection of respiratory sounds
in bronchial asthma patients based on machine learning method. Sovrem Tekhnologii Med. 2022;14(5):45-51. [FREE Full
text] [doi: 10.17691/stm2022.14.5.05] [Medline: 37181833]

34. Kim BJ, Kim BS, Mun JH, Lim C, Kim K. An accurate deep learning model for wheezing in children using real world
data. Sci Rep. 2022;12(1):22465. [FREE Full text] [doi: 10.1038/s41598-022-25953-1] [Medline: 36577766]

35. Ma W, Deng X, Yang Y, Fang W. An effective lung sound classification system for respiratory disease diagnosis using
DenseNet CNN model with sound pre-processing engine. 2022. Presented at: IEEE Biomedical Circuits and Systems
Conference (BioCAS); 2022 October 13-15; Taipei, Taiwan.

36. Nguyen TN, Arjoune Y, Schroeder JC, Pillai D, Teach S, Patel S. Machine learning for automated wheeze detection in
children. 2022. Presented at: IEEE International Conference on Big Data (Big Data); 2022 December 17-20; Osaka, Japan.

37. Zhang Q, Zhang J, Yuan J, Huang H, Zhang Y, Zhang B, et al. SPRSound: Open-source SJTU paediatric respiratory sound
database. IEEE Trans Biomed Circuits Syst. 2022;16(5):867-881. [doi: 10.1109/TBCAS.2022.3204910] [Medline: 36070274]

38. Li J, Wang X, Wang X, Qiao S, Zhou Y. Improving the resnet-based respiratory sound classification systems with focal
loss. 2022. Presented at: IEEE Biomedical Circuits and Systems Conference (BioCAS); 2022 October 13-15; Taipei, Taiwan.

39. Zhang L, Zhu Y, Tu S, Xu L. A feature polymerized based two-level ensemble model for respiratory sound classification.
2022. Presented at: IEEE Biomedical Circuits and Systems Conference (BioCAS); 2022 October 13-15; Taipei, Taiwan.

40. Babu N, Kumari J, Mathew J, Satija U, Mondal A. Multiclass categorisation of respiratory sound signals using neural
network. 2022. Presented at: IEEE Biomedical Circuits and Systems Conference (BioCAS); 2022 October 13; Taipei,
Taiwan.

41. Heitmann J, Glangetas A, Doenz J, Dervaux J, Shama DM, Garcia DH, et al. with the Pneumoscope Study Group.
DeepBreath-automated detection of respiratory pathology from lung auscultation in 572 pediatric outpatients across 5
countries. NPJ Digit Med. 2023;6(1):104. [FREE Full text] [doi: 10.1038/s41746-023-00838-3] [Medline: 37268730]

42. Hu J, Leow C, Tao S, Goh W, Gao Y. Supervised contrastive pretrained resnet with mixup to enhance respiratory sound
classification on imbalanced and limited dataset. 2023. Presented at: IEEE Biomedical Circuits and Systems Conference
(BioCAS); 2023 October 19; Toronto, ON, Canada.

43. Huang D, Wang L, Lu H, Wang W. A contrastive embedding-based domain adaptation method for lung sound recognition
in children community-acquired pneumonia. 2023. Presented at: ICASSP 2023 - 2023 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP); 2023 June 04-10; Rhodes Island, Greece.

44. Huang D, Wang L, Wang W. A multi-center clinical trial for wireless stethoscope-based diagnosis and prognosis of children
community-acquired pneumonia. IEEE Trans Biomed Eng. 2023;70(7):2215-2226. [doi: 10.1109/TBME.2023.3239372]
[Medline: 37021995]

J Med Internet Res 2025 | vol. 27 | e66491 | p. 16https://www.jmir.org/2025/1/e66491
(page number not for citation purposes)

Park et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

https://www.embase.com/records?subaction=viewrecord&rid=1&page=1&id=L626845640
https://europepmc.org/abstract/MED/30927097
http://dx.doi.org/10.1007/s00431-019-03363-2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30927097&dopt=Abstract
https://europepmc.org/abstract/MED/32158281
http://dx.doi.org/10.2147/MDER.S221029
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32158281&dopt=Abstract
http://dx.doi.org/10.1016/j.bspc.2020.102266
http://dx.doi.org/10.1109/access.2021.3111507
http://dx.doi.org/10.1080/03091902.2021.1992520
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34730469&dopt=Abstract
https://europepmc.org/abstract/MED/37181833
https://europepmc.org/abstract/MED/37181833
http://dx.doi.org/10.17691/stm2022.14.5.05
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=37181833&dopt=Abstract
https://doi.org/10.1038/s41598-022-25953-1
http://dx.doi.org/10.1038/s41598-022-25953-1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36577766&dopt=Abstract
http://dx.doi.org/10.1109/TBCAS.2022.3204910
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36070274&dopt=Abstract
https://boris.unibe.ch/id/eprint/183165
http://dx.doi.org/10.1038/s41746-023-00838-3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=37268730&dopt=Abstract
http://dx.doi.org/10.1109/TBME.2023.3239372
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=37021995&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


45. Ngo D, Pham L, Phan H, Tran M, Jarchi D. A deep learning architecture with spatio-temporal focusing for detecting
respiratory anomalies. 2023. Presented at: IEEE Biomedical Circuits and Systems Conference (BioCAS); 2023 October
19-21; Toronto, ON, Canada.

46. Ngo D, Pham L, Phan H, Tran M, Jarchi D, Kolozali Ş. An inception-residual-based architecture with multi-objective loss
for detecting respiratory anomalies. 2023. Presented at: IEEE 25th International Workshop on Multimedia Signal Processing
(MMSP); 2023 September 27-29; Poitiers, France.

47. Ntalampiras S. Explainable siamese neural network for classifying pediatric respiratory sounds. IEEE J Biomed Health
Inform. 2023;27(10):4728-4735. [doi: 10.1109/JBHI.2023.3299341] [Medline: 37498759]

48. Park JS, Kim K, Kim JH, Choi YJ, Kim K, Suh DI. A machine learning approach to the development and prospective
evaluation of a pediatric lung sound classification model. Sci Rep. 2023;13(1):1289. [FREE Full text] [doi:
10.1038/s41598-023-27399-5] [Medline: 36690658]

49. Pessoa D, Petmezas G, Papageorgiou V, Rocha B, Stefanopoulos L, Kilintzis V. Pediatric respiratory sound classification
using a dual input deep learning architecture. 2024. Presented at: IEEE Biomedical Circuits and Systems Conference
(BioCAS); 2023 October 19-21; Toronto, ON, Canada.

50. TaghiBeyglou B, Assadi A, Elwali A, Yadollahi A. TRespNET: A dual-route exploratory CNN model for pediatric
adventitious respiratory sound identification. Biomed Signal Process Control. 2024;93:106170. [doi:
10.1016/j.bspc.2024.106170]

51. Chowdhury S, Doulah ABMSU, Rasheduzzaman M, Rafa TS. Pediatric pneumonia diagnosis: integration of a self-assembled
digital stethoscope with raspberry Pi and 1D CNN model. 2024. Presented at: International Conference on Advances in
Computing, Communication, Electrical, and Smart Systems (iCACCESS); 2024 March 08-09; Dhaka, Bangladesh.

52. Crisdayanti IAPA, Nam SW, Jung SK, Kim S. Attention feature fusion network via knowledge propagation for automated
respiratory sound classification. IEEE Open J Eng Med Biol. 2024;5:383-392. [FREE Full text] [doi:
10.1109/OJEMB.2024.3402139] [Medline: 38899013]

53. Wang F, Yuan X, Bao J, Lam C, Huang G, Chen H. OFGST-Swin: swin transformer utilizing overlap fusion-based
generalized S-transform for respiratory cycle classification. IEEE Trans. Instrum. Meas. 2024;73:1-13. [doi:
10.1109/tim.2024.3428637]

54. Yeh C, Chiu S, Deng X, Fang W. A novel AI-Inspired method and system implementation for detecting and classifying
pediatric respiratory sound events. 2024. Presented at: IEEE Biomedical Circuits and Systems Conference (BioCAS); 2024
October 24; Xi'an, China.

55. Rocha BM, Filos D, Mendes L, Serbes G, Ulukaya S, Kahya YP, et al. An open access database for the evaluation of
respiratory sound classification algorithms. Physiol Meas. 2019;40(3):035001. [doi: 10.1088/1361-6579/ab03ea] [Medline:
30708353]

56. Florin T, Ambroggio L, Lorenz D, Kachelmeyer A, Ruddy R, Kuppermann N, et al. Development and internal validation
of a prediction model to risk stratify children with suspected community-acquired pneumonia. Clin Infect Dis.
2021;73(9):e2713-e2721. [FREE Full text] [doi: 10.1093/cid/ciaa1690] [Medline: 33159514]

57. Cohen JF, Korevaar DA, Altman DG, Bruns DE, Gatsonis CA, Hooft L, et al. STARD 2015 guidelines for reporting
diagnostic accuracy studies: explanation and elaboration. BMJ Open. 2016;6(11):e012799. [FREE Full text] [doi:
10.1136/bmjopen-2016-012799] [Medline: 28137831]

58. Sounderajah V, Ashrafian H, Golub RM, Shetty S, De Fauw J, Hooft L, et al. STARD-AI Steering Committee. Developing
a reporting guideline for artificial intelligence-centred diagnostic test accuracy studies: the STARD-AI protocol. BMJ Open.
2021;11(6):e047709. [FREE Full text] [doi: 10.1136/bmjopen-2020-047709] [Medline: 34183345]

59. Boashash B. Time-frequency signal analysis and processing: a comprehensive reference. New York City. Academic Press;
2015.

60. Koduru A, Valiveti HB, Budati AK. Feature extraction algorithms to improve the speech emotion recognition rate. Int J
Speech Technol. 2020;23(1):45-55. [doi: 10.1007/s10772-020-09672-4]

61. Wanasinghe T, Bandara S, Madusanka S, Meedeniya D, Bandara M, De La Torre Díez I. Lung sound classification with
multi-feature integration utilizing lightweight CNN model. IEEE Access. 2024;12:21262-21276. [doi:
10.1109/access.2024.3361943]

62. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. 2016. Presented at: IEEE Conference on
Computer Vision and Pattern Recognition (CVPR); 2016 June 27:770-778; Las Vegas, NV, USA.

63. Grama L, Tuns L, Rusu C. On the Optimization of SVM kernel parameters for improving audio classification accuracy.
2017. Presented at: 14th International Conference on Engineering of Modern Electric Systems (EMES); 2017 June 01;
Oradea, Romania.

64. Wanasinghe T, Bandara S, Madusanka S, Meedeniya D, Bandara M, De la Torre Díez I. Lung sound classification for
respiratory disease identification using deep learning: a survey. Int J Online Eng. 2024;20(10):115-129. [doi:
10.3991/ijoe.v20i10.49585]

65. Huang D, Huang J, Qiao K, Zhong N, Lu H, Wang W. Deep learning-based lung sound analysis for intelligent stethoscope.
Mil Med Res. 2023;10(1):44. [FREE Full text] [doi: 10.1186/s40779-023-00479-3] [Medline: 37749643]

J Med Internet Res 2025 | vol. 27 | e66491 | p. 17https://www.jmir.org/2025/1/e66491
(page number not for citation purposes)

Park et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://dx.doi.org/10.1109/JBHI.2023.3299341
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=37498759&dopt=Abstract
https://doi.org/10.1038/s41598-023-27399-5
http://dx.doi.org/10.1038/s41598-023-27399-5
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36690658&dopt=Abstract
http://dx.doi.org/10.1016/j.bspc.2024.106170
https://europepmc.org/abstract/MED/38899013
http://dx.doi.org/10.1109/OJEMB.2024.3402139
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=38899013&dopt=Abstract
http://dx.doi.org/10.1109/tim.2024.3428637
http://dx.doi.org/10.1088/1361-6579/ab03ea
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30708353&dopt=Abstract
https://europepmc.org/abstract/MED/33159514
http://dx.doi.org/10.1093/cid/ciaa1690
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33159514&dopt=Abstract
https://bmjopen.bmj.com/lookup/pmidlookup?view=long&pmid=28137831
http://dx.doi.org/10.1136/bmjopen-2016-012799
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28137831&dopt=Abstract
https://bmjopen.bmj.com/lookup/pmidlookup?view=long&pmid=34183345
http://dx.doi.org/10.1136/bmjopen-2020-047709
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34183345&dopt=Abstract
http://dx.doi.org/10.1007/s10772-020-09672-4
http://dx.doi.org/10.1109/access.2024.3361943
http://dx.doi.org/10.3991/ijoe.v20i10.49585
https://mmrjournal.biomedcentral.com/articles/10.1186/s40779-023-00479-3
http://dx.doi.org/10.1186/s40779-023-00479-3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=37749643&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


66. Kim Y, Hyon Y, Lee S, Woo S, Ha T, Chung C. The coming era of a new auscultation system for analyzing respiratory
sounds. BMC Pulm Med. 2022;22(1):119. [FREE Full text] [doi: 10.1186/s12890-022-01896-1] [Medline: 35361176]

67. Ruchonnet-Métrailler I, Siebert JN, Hartley M, Lacroix L. Automated interpretation of lung sounds by deep learning in
children with asthma: scoping review and strengths, weaknesses, opportunities, and threats analysis. J Med Internet Res.
2024;26:e53662. [FREE Full text] [doi: 10.2196/53662] [Medline: 39178033]

68. Sounderajah V, Ashrafian H, Rose S, Shah NH, Ghassemi M, Golub R, et al. A quality assessment tool for artificial
intelligence-centered diagnostic test accuracy studies: QUADAS-AI. Nat Med. 2021;27(10):1663-1665. [doi:
10.1038/s41591-021-01517-0] [Medline: 34635854]

69. Mongan J, Moy L, Kahn CE. Checklist for artificial intelligence in medical imaging (CLAIM): a guide for authors and
reviewers. Radiol Artif Intell. 2020;2(2):e200029. [FREE Full text] [doi: 10.1148/ryai.2020200029] [Medline: 33937821]

70. Vasey B, Nagendran M, Campbell B, Clifton DA, Collins GS, Denaxas S, et al. DECIDE-AI expert group. Reporting
guideline for the early-stage clinical evaluation of decision support systems driven by artificial intelligence: DECIDE-AI.
Nat Med. 2022;28(5):924-933. [doi: 10.1038/s41591-022-01772-9] [Medline: 35585198]

71. Karimian G, Petelos E, Evers SMAA. The ethical issues of the application of artificial intelligence in healthcare: a systematic
scoping review. AI Ethics. 2022;2(4):539-551. [doi: 10.1007/s43681-021-00131-7]

72. Petersson L, Larsson I, Nygren JM, Nilsen P, Neher M, Reed JE, et al. Challenges to implementing artificial intelligence
in healthcare: a qualitative interview study with healthcare leaders in Sweden. BMC Health Serv Res. 2022;22(1):850.
[FREE Full text] [doi: 10.1186/s12913-022-08215-8] [Medline: 35778736]

Abbreviations
AI: artificial intelligence
CF: cystic fibrosis
CNN: convolutional neural network
FN: false negative
FP: false positive
HMM: hidden Markov model
MFCC: Mel-frequency cepstral coefficients
ML: machine learning
PRISMA-DTA: Preferred Reporting Items for Systematic Reviews and Meta-Analysis for Diagnostic Test
Accuracy Studies
QUADAS-2: Quality Assessment of Diagnostic Accuracy Studies (Version 2)
ResNet: residual network
STARD: Standards for Reporting of Diagnostic Accuracy Studies
STFT: short-time Fourier transform
SVM: support vector machine
TN: true negative
TP: true positive

Edited by A Coristine; submitted 14.09.24; peer-reviewed by I Ruchonnet-Métrailler, D Meedeniya, F Ponzio; comments to author
23.11.24; revised version received 14.02.25; accepted 13.03.25; published 18.04.25

Please cite as:
Park JS, Park S-Y, Moon JW, Kim K, Suh DI
Artificial Intelligence Models for Pediatric Lung Sound Analysis: Systematic Review and Meta-Analysis
J Med Internet Res 2025;27:e66491
URL: https://www.jmir.org/2025/1/e66491
doi: 10.2196/66491
PMID:

©Ji Soo Park, Sa-Yoon Park, Jae Won Moon, Kwangsoo Kim, Dong In Suh. Originally published in the Journal of Medical
Internet Research (https://www.jmir.org), 18.04.2025. This is an open-access article distributed under the terms of the Creative
Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work, first published in the Journal of Medical Internet Research (ISSN
1438-8871), is properly cited. The complete bibliographic information, a link to the original publication on https://www.jmir.org/,
as well as this copyright and license information must be included.

J Med Internet Res 2025 | vol. 27 | e66491 | p. 18https://www.jmir.org/2025/1/e66491
(page number not for citation purposes)

Park et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

https://bmcpulmmed.biomedcentral.com/articles/10.1186/s12890-022-01896-1
http://dx.doi.org/10.1186/s12890-022-01896-1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35361176&dopt=Abstract
https://www.jmir.org/2024//e53662/
http://dx.doi.org/10.2196/53662
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=39178033&dopt=Abstract
http://dx.doi.org/10.1038/s41591-021-01517-0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34635854&dopt=Abstract
https://europepmc.org/abstract/MED/33937821
http://dx.doi.org/10.1148/ryai.2020200029
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33937821&dopt=Abstract
http://dx.doi.org/10.1038/s41591-022-01772-9
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35585198&dopt=Abstract
http://dx.doi.org/10.1007/s43681-021-00131-7
https://bmchealthservres.biomedcentral.com/articles/10.1186/s12913-022-08215-8
http://dx.doi.org/10.1186/s12913-022-08215-8
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35778736&dopt=Abstract
https://www.jmir.org/2025/1/e66491
http://dx.doi.org/10.2196/66491
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

