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Abstract

Background: Artificial intelligence (AI) applied to real-world data (RWD; eg, electronic health care records) has been identified
as a potentially promising technical paradigm for the pharmacovigilance field. There are several instances of AI approaches
applied to RWD; however, most studies focus on unstructured RWD (conducting natural language processing on various data
sources, eg, clinical notes, social media, and blogs). Hence, it is essential to investigate how AI is currently applied to structured
RWD in pharmacovigilance and how new approaches could enrich the existing methodology.

Objective: This scoping review depicts the emerging use of AI on structured RWD for pharmacovigilance purposes to identify
relevant trends and potential research gaps.

Methods: The scoping review methodology is based on the PRISMA (Preferred Reporting Items for Systematic Reviews and
Meta-Analyses) methodology. We queried the MEDLINE database through the PubMed search engine. Relevant scientific
manuscripts published from January 2010 to January 2024 were retrieved. The included studies were “mapped” against a set of
evaluation criteria, including applied AI approaches, code availability, description of the data preprocessing pipeline, clinical
validation of AI models, and implementation of trustworthy AI criteria following the guidelines of the FUTURE (Fairness,
Universality, Traceability, Usability, Robustness, and Explainability)-AI initiative.

Results: The scoping review ultimately yielded 36 studies. There has been a significant increase in relevant studies after 2019.
Most of the articles focused on adverse drug reaction detection procedures (23/36, 64%) for specific adverse effects. Furthermore,
a substantial number of studies (34/36, 94%) used nonsymbolic AI approaches, emphasizing classification tasks. Random forest
was the most popular machine learning approach identified in this review (17/36, 47%). The most common RWD sources used
were electronic health care records (28/36, 78%). Typically, these data were not available in a widely acknowledged data model
to facilitate interoperability, and they came from proprietary databases, limiting their availability for reproducing results. On the
basis of the evaluation criteria classification, 10% (4/36) of the studies published their code in public registries, 16% (6/36) tested
their AI models in clinical environments, and 36% (13/36) provided information about the data preprocessing pipeline. In addition,
in terms of trustworthy AI, 89% (32/36) of the studies followed at least half of the trustworthy AI initiative guidelines. Finally,
selection and confounding biases were the most common biases in the included studies.

Conclusions: AI, along with structured RWD, constitutes a promising line of work for drug safety and pharmacovigilance.
However, in terms of AI, some approaches have not been examined extensively in this field (such as explainable AI and causal
AI). Moreover, it would be helpful to have a data preprocessing protocol for RWD to support pharmacovigilance processes.
Finally, because of personal data sensitivity, evaluation procedures have to be investigated further.
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Introduction

Background
Pharmacovigilance is defined by the World Health Organization
as “the science and activities relating to the detection,
assessment, understanding, and prevention of adverse effects
or any other drug-related problem” [1]. Pharmacovigilance plays
a crucial role in ensuring the safety of medications and
protecting the health of patients because it mostly focuses on
the identification of potential adverse drug reactions (ADRs)
after medicinal products have been licensed and released to the
public.

ADRs can range from mild and tolerable side effects to severe
and life-threatening events. They constitute 5% to 7% of
emergency department consultations [2]. Their impact in terms
of public health is significant because there are estimates
concluding that ADRs can cause an increase in the duration of
hospitalization stays for outpatient (mean 9.2, SD 0.2 d) and
inpatient (mean 6.1, SD 2.3 d) settings [3]. Typically,
pharmacovigilance professionals analyze data from individual
case safety report (ICSR) databases (such as the Food and Drug
Administration Adverse Event Reporting System, the database
maintained by the US Food and Drug Administration) to identify
potential pharmacovigilance signals, namely potential causal
relationships between an ADR and a drug. ICSRs are typically
submitted either by patients or by health care or
pharmacovigilance professionals, and they are the main data
source used today for pharmacovigilance. However, ICSR
databases are subject to many biases; in addition, underreporting
has been identified as a huge issue [4]. Moreover, such databases
frequently lack information that could make a significant
difference in the examination of a potential signal (eg, patients’
medical history). Hence, the early detection of potential
pharmacovigilance signals by collecting and analyzing data
from various sources is critical to prevent serious side effects
as soon as possible.

The term “real-world data” (RWD) refers to data collected
outside of the controlled environment of clinical trials, such as
electronic health records (EHRs), patient registries, insurance
claims databases, electronic prescription systems, and so on.
There is a growing interest in using RWD for pharmacovigilance
signal management to facilitate faster and more efficient
postmarketing surveillance [5]. The significance of RWD in
pharmacovigilance lies in its potential for representing
longitudinal real-world patient experiences and health care
practices that can provide insights into drug safety under real-life
conditions. Analyzing RWD could also enrich and consolidate
the already existing knowledge on ADRs (eg, by detecting new
cofounders). Indicatively, a federated RWD network was used
recently to validate the value of RWD in terms of
pharmacovigilance signal management [6].

To this end, the European Medicines Agency and the US Food
and Drug Administration have established infrastructures for
the leverage of RWD for drug safety purposes, called Data
Analysis and Real World Interrogation Network (DARWIN)
[7] and the Sentinel Initiative [8], respectively. RWD are also
being actively investigated for purposes beyond drug safety (eg,
epidemiology) [9]. It should be noted that although RWD could
in principle provide a good overview of patients’clinical course,
two major challenges are preventing their use: (1) these datasets
typically come with significant data quality risks and usually
contain a high proportion of null values and errors; and (2)
because of legal, ethical, and regulatory issues (eg, patient
privacy issues), it is difficult to access these data sources.

Rationale
Artificial intelligence (AI) is widely acknowledged as a
potentially very useful technical breakthrough that could be
used to support decisions in health care (eg, clinical decision
support systems) due to its ability to efficiently process big data
to seek useful information. AI could be used to identify patterns
and associations within large amounts of data (eg, RWD) where
traditional statistical methods of data analysis may struggle to
extract because of the amount and complexity (eg, nonlinear
relationships between variables) of the data. AI has been widely
investigated regarding its applications in health care (eg,
personalized medicine) with promising results [10,11]; however,
it is not yet widely applied in clinical practice. In the context
of pharmacovigilance, AI could potentially support multiple
aspects (eg, the identification of patient subpopulations who
may be more vulnerable to specific ADRs), contributing to the
vision of personalized drug safety management.

Objectives
The objective of this scoping review (SR) was to identify and
characterize the current research trends regarding the use of AI
on structured RWD for pharmacovigilance and identify relevant
gaps.

Methods

The PRISMA (Preferred Reporting Items for Systematic
Reviews and Meta-Analyses) [12] methodology or rationale
was applied. The PRISMA-ScR (Preferred Reporting Items for
Systematic Reviews and Meta-Analyses extension for Scoping
Reviews) statement is a road map for authors to describe more
precisely the state of the art and the findings of the literature
search, as well as discuss the results.

Eligibility Criteria
Journal and conference articles written in English were selected
if they focused on pharmacovigilance and reported the use of
symbolic and nonsymbolic AI approaches applied to RWD,
specifically EHRs, insurance claims databases, and
administrative health data (Textbox 1).
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Textbox 1. Inclusion and exclusion criteria for the scoping review.

Inclusion criteria

• Article type: research

• Language: English

• Data type: tabular

• Data analysis method: symbolic artificial intelligence (AI) and nonsymbolic AI

Exclusion criteria

• Article type: review and opinion articles

• Language: other

• Data type: image and text

• Data analysis method: statistical

Review and opinion articles were excluded from the final
manuscript selection. Furthermore, research articles focusing
on image and text data (eg, social media and clinical notes) were
also excluded. In addition, AI methods focusing on the use of
natural language processing (NLP), natural language
understanding, image processing, or object detection were
considered beyond the scope of this work.

A key issue that came up during this SR was the lack of a clear
distinction between plain statistical methods and machine
learning (ML) approaches because these 2 domains frequently
overlap, and these 2 terms are sometimes used interchangeably.
In this manuscript, we acknowledge that the difference between
AI and statistical methods is that AI creates models that can
“learn” from data during iterative training processes, while

statistical methods deal with finding relationships between
variables. Thus, we considered the iterative “learning” part of
an algorithm as the key feature to classify the algorithm as AI
and ML. We excluded papers that were based on algorithms
with no iterative “learning” scheme because we considered them
to be part of the “plain statistical methods” approaches. Finally,
we excluded papers that focused on adverse drug events related
to medical devices.

Information Sources and Search Strategy
A search query was developed and executed on January 31,
2024, to include research articles from 2010 to 2024 exclusively
from the MEDLINE scientific library, given that it is the oldest
and biggest repository of journal articles in life sciences.
Textbox 2 presents the query structure.

Textbox 2. Query structure ([pharmacovigilance terms with OR] AND [artificial intelligence (AI) terms with OR] AND [real-world data (RWD) terms
with OR]).

Pharmacovigilance (keywords relevant to known adverse drug reaction [ADR] categories, synonyms of drug safety, pharmacovigilance
terminology, and known individual case safety report [ICSR] databases)

V OR “pharmacovigil*” OR “pharmaco-vigil*” OR “side effect*” OR “adverse reaction*” OR “Product Surveillance” OR “postmarket*” OR
pharmacoepidemiol* OR pharmaco-epidemiol* OR “drug safety” OR “drug event*” OR “toxicit*” OR “drug reaction*” OR “adverse drug*” OR
“allerg*” OR “post-market*” OR “post market*” OR vaccinovigil* OR vaccino-vigil* OR eudravigilance OR “individual case safety report*” OR
ICSR OR VAERS OR FAERS OR AERS OR vigibase OR “adverse effect*” OR “adverse event*” OR hypersensitiv* OR “spontaneous report*” OR
“yellow card” OR “yellow-card” OR ADR OR “personalized pharmacovigilance” OR “precision pharmacovigilance” OR “pharmacosurveillance”
OR “pharmaco-surveillance”

AI (categories of AI, terms that are used in the development of an AI model, explainable and interpretable AI methods, and different AI
architectures)

“artificial intelligence” OR AI OR “machine learning” OR ML OR “neural network*” OR NN* OR “deep learning” OR DL OR ontolog* OR
“knowledge engineering” OR KE OR reasoning OR inference OR “semantic web” OR “OWL” OR “Web Ontology Language” OR SWRL OR “RDF”
OR “Resource Description Framework” OR “prediction” OR “estimation” OR “XAI” OR “SHAP” OR “Shapley value” OR “LIME” OR “Local
Interpretable Model-agnostic Explanations” OR “DeepSHAP” OR “DeepLIFT” OR “CXplain” OR “Explainable Artificial Intelligence” OR “Explainable
machine learning” OR “Interpretable artificial intelligence” OR “Interpretable machine learning”

RWD or real-world evidence (categories of RWD and data models that are used to store RWD)

“Real World Evidence” OR “Real World Data” OR RWE OR RWD OR “Observational Medical Outcomes Partnership” OR “OMOP” OR “Electronic
Healthcare Record*” OR “EHR” OR “Electronic Medical Record*” OR “EMR*” OR EHDEN OR OHDSI OR i2b2 OR Sentinel OR DARWIN OR
“Data Analysis and Real World Interrogation Network” OR administrative OR claim* OR “Observational Health Data Sciences and Informatics” OR
“European Health Data Evidence Network” OR “multimodal data” OR “multimodal drug data” OR “multidimensional data” OR “multidimensional
drug data” OR “multi-modal data” OR “multi-modal drug data” OR “multi-dimensional data” OR “multi-dimensional drug data”
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Selection Process
The initial phase (phase 1) focused on screening the titles and
abstracts of the articles retrieved from the search query (Textbox
2) to map those that potentially met our inclusion criteria and
exclude irrelevant studies using the Rayyan tool (Rayyan
Systems Inc) [13]. Rayyan is an AI tool designed to facilitate
remote collaboration among researchers when conducting
systematic literature reviews. The platform gathers the titles
and abstracts of all articles selected for the study, and reviewers
can evaluate the eligibility (ie, “include,” “exclude,” or
“maybe”) of every article based on their review’s objectives in
blind mode, that is, each reviewer assesses the articles without
prior knowledge of the other reviewers’ decisions. We resolved
any conflicts that arose during this process through consensus
meetings involving all reviewers.

The second phase focused on the full-text review of the papers
selected during phase 1 to decide on the final set for inclusion
in this study. In the full-text review of the studies selected based
on titles and abstracts, we excluded research papers that did not
meet ≥1 of the inclusion criteria (ie, strong focus on AI, RWD,
and pharmacovigilance) as well as studies that met the exclusion
criteria (eg, studies related to image and text data or those
following only statistical approaches).

Data-Charting Process
A standard data extraction form was used to obtain an overview
of the 36 selected studies (Tables S1 and S2 in Multimedia
Appendix 1). For each study, we extracted information about
the authors; journal name (where the study was published);
publication year; country of origin (where the study was
conducted); the objective of the study; types of organizations
that participated in the study (based on the authors’ affiliations);
and key findings that relate to the scoping review question,
which are described in the next subsection (Data Collection
Process and Mapping). Any inconsistencies were discussed and
resolved among the reviewers.

Data Collection Process and Mapping
The selected studies were further elaborated and mapped against
evaluation criteria using a spreadsheet. The main categories of
mapping criteria were as follows: pharmacovigilance objectives
(drug safety core activities and drug safety special topics), data
provenance (data source categories and data sources), countries
of origin, AI algorithm categories, data preprocessing methods,
the use of explainable AI (XAI) methods, code availability, the
use of models in clinical practice, ethical AI, and so on. Table
1 presents an external description of the mapping criteria.

Table 1. The categories and subcategories used in the risk-of-bias assessment of included studies designed to characterize artificial intelligence (AI)
studies on structured real-world data in pharmacovigilance.

SubcategoriesExplanationCategory of bias

The bias that occurs when the input data of an AI model
underrepresent the target population

Selection bias • Underrepresentation of certain demographic groups
• Overrepresentation of adverse drug events from spe-

cific health care systems or regions

How the different features are collected and measuredMeasurement bias • Inconsistent adverse drug event reporting practices
• Variations in diagnostic criteria or coding practices

for medical conditions

How the study processes time-dependent featuresTemporal bias • Changes in prescribing patterns or drug formulations
over time

• Seasonal variations in disease prevalence or reporting
behaviors

The biases produced form AI model outputsAlgorithmic bias • Differential performance in adverse drug event detec-
tion across patient subgroups

• Biased risk assessments for certain medications or
populations

How stereotypes influence the AI model design and inter-
pretation

Implicit bias • Overlooking potential drug interactions more common
in specific ethnic groups

• Underestimating the severity of side effects reported
by certain demographics

How unaccounted-for confounders influence predictionConfounding bias • Failing to consider comorbidities when assessing drug
safety profiles

• Not accounting for polypharmacy effects in adverse-
event analysis

This refers to the tendency to overly rely on automated
systems

Automation bias • Overlooking rare or unusual adverse drug events not
flagged by AI systems

• Reduced critical evaluation of AI-generated safety
signals by human experts
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Studying Risk-of-Bias Assessment
To effectively map the risk of bias in each included study, we
considered selection, measurement, temporal, implicit,
confounding and automation biases. Furthermore, we translated
these categories into more specific categories according to our
study (Table 1).

Synthesis Methods
The mapping strategy was designed based on the 3 main pillars
of the objective; in addition, we included general information
about the research papers (Table 2). Furthermore, we included
free-text fields in the mapping Microsoft Excel file to add
significant extra details that cannot be easily classified. These
fields included “objective,” “methods,” “assessment,” and
“interesting results.” The criteria encompassed specific attributes

(eg, drug safety core activities) that were defined based on
previous experience of conducting an SR in the field [14] and
key interest aspects identified during the review.

Furthermore, in terms of ethical AI, the included studies were
evaluated based on trustworthy AI guidelines for solutions in
medicine and health care from the FUTURE (Fairness,
Universality, Traceability, Usability, Robustness, and
Explainability)-AI initiative [15]. These guidelines are separated
into 7 categories (fairness, universality, traceability, usability,
robustness, explainability, and a general category). For our
evaluation procedure, we included only the highly recommended
subcategories from each of the 7 main categories for proof of
concept (low technology readiness levels for ML models) [16].
Table 3 presents the selected criteria and their description.
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Table 2. Mapping criteria architecture for each different category in the query. There are 2 types of criteria: textual and binary (yes or no).

SubcriteriaCategories and critera

General information

ID number of articlesPubMed and MEDLINE ID (number)

List of authorsAuthors (text)

Article titleTitle (text)

ID number of articlesJournal (text)

Year of article publicationYear published (number)

Types of organizations based on the authors’ affiliation; possible values:
health care, government, academia, industry, pharmacovigilance monitoring

Types of organizations (text)

Country where the research was conducted based on the authors’ affilia-
tions

Country (text)

Pharmacovigilance

Possible values: ADEa detection, ADE monitoring, ADE prevention, ADE
assessment, ADE information collection, and ADE reporting

Drug safety core activities (text)

Possible values: comparative drug analysis, drug interactions, MoAb

identification and analysis, personalized drug safety, signal detection,

Drug safety special topics (text)

specific (class of) disease, specific (class of) drugs, specific adverse effect,
and vaccine safety

Drugs being examined in the research papersDrug (text)

Reactions being examined in the research papersReaction (text)

Indications being examined in the research papersIndication (text)

Known health informatics terminologies that are detected in the research
papers

Reference terminologies (text)

AIc

Possible values: nonsymbolic AI and symbolic AIAI categories (text)

Possible values: classification and regressionNonsymbolic AI (text)

Possible values: random forest, logistic regression, artificial neural network,

XGBoostd, support vector machine, decision tree, knowledge graph, k-

Classification (text)

nearest neighbors, gradient boost, naïve Bayes, random survival forest,
and extra tree

Possible values: logistic regression, linear regression, LASSOe, and regu-
larized Cox regression

Regression (text)

Possible values: dimensionality reduction, feature engineering, null impu-
tation, and data cleansing

Data preprocessing type (text)

Possible values: data normalization and remove null valuesData cleansing (text)

Possible values: one-hot encoding, binning, splitting, and calculated fea-
tures

Feature engineering (text)

Possible values: regression or classification imputationNull imputation (text)

Possible values: LIMEf and SHAPgExplainable AI methods (text)

Possible values: OWLh and RDFiKnowledge representation formalism (text)

Possible values: knowledge extraction, knowledge integration, and
knowledge representation

Knowledge engineering core activities (text)

Real-world data

Possible values: ADE databases, clinical narratives, clinical trials drug

information databases, drug regulation documentation, EHRsj, genetics

Data source categories (text)

and biochemical databases, spontaneous reporting systems, dispensing
records from pharmacies, and administrative claims data
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SubcriteriaCategories and critera

Possible values: proprietary closed data sources (eg, specific hospital

EHR), FAERSk, SIDERl, SMILESm, UK Biobank, Osteoarthritis Initiative

dataset, PharmGKBn, TwoSIDES, EU-ADRo reference set, Stockholm

Electronic Patient Record Corpus, MIMICp, OMIMq, DisGeNetr, and

AEOLUSs

Data source or sources (text)

Possible values: OMOP-CDMt, Sentinel, and customData model (text)

Evaluation criteria

The availability of the code in an open registry; possible values: yes and
no

Code availability (text)

Information about the data preprocessing procedures; possible values: yes
and no

Data preprocessing

Information about the evaluation of the produced work pipeline in clinical
environments; possible values: yes and no

Clinical use

aADE: adverse drug event.
bMoA: mechanism of action.
cAI: artificial intelligence.
dXGBoost: extreme gradient boosting.
eLASSO: least absolute shrinkage and selection operator.
fLIME: local interpretable model-agnostic explanations.
gSHAP: Shapley additive explanations.
hOWL: Web Ontology Language.
iRDF: resource description framework.
jEHR: electronic health record.
kFAERS: Food and Drug Administration Adverse Event Reporting System.
lSIDER: Side Effect Resource.
mSMILES: Simplified Molecular Input Line Entry System.
nPharmGKB: Pharmacogenomics Knowledge Base.
oEU-ADR: European Union Adverse Drug Reaction.
pMIMIC: Medical Information Mart for Intensive Care.
qOMIM: Online Mendelian Inheritance in Man.
rDisGeNet: gene-disease association network.
sAEOLUS: Adverse Event Open Learning through Universal Standardization.
tOMOP-CDM: Observational Medical Outcomes Partnership Common Data Model.
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Table 3. Detailed description of the FUTURE (Fairness, Universality, Traceability, Usability, Robustness, and Explainability)-AI highly recommended
and proof-of-concept machine learning guidelines used for this study, along with a general category (Table S3 Multimedia Appendix 1).

DescriptionCategories and recommendations

Fairness

Identification of possible types and sources of bias for the AIa tool during
the design phase (eg, sex, gender, age, ethnicity, socioeconomics, geogra-
phy, comorbidities or disability of patients, and human biases during data
labeling)

Define sources of bias

Universality

Specification of the clinical settings in which the AI tool will be applied
(eg, primary health care centers, hospitals, home care, low- vs high-re-
source settings, and 1 country or multiple countries)

Define clinical settings

Testing of the developed AI model to an external dataset with different
characteristics from the training set

Evaluate using external data

Traceability

Creation of documentation files that provide technical (eg, public reposi-
tories) and clinical information (eg, bias of the model based on its use)

Provide documentation (eg, technical and clinical)

Usability

Specification of the model’s use from health care professionalsDefine user requirements

Robustness

Specification of data sources’ variation that may impact the AI tool’s ro-
bustness in the real world (differences in equipment, technical fault of the
machine, data heterogeneities during data acquisition or annotation, or
adversarial attacks)

Define sources of data variation

Data for the training process should represent the population based on the
case study for which the AI model has been developed

Train with representative data

Risk mitigation measures should be implemented to optimize the robustness
of the AI model, such as regularization, data augmentation, data harmo-
nization, or domain adaptation

Evaluate and optimize robustness

Explainability

Use of interpretable or explainable modelsDefine explainability needs

General

—bEngage interdisciplinary stakeholders throughout the AI lifecycle

—Implement measures for data privacy and security

—Define adequate evaluation plan (eg, datasets, metrics, and reference
methods)

aAI: artificial intelligence.
bNot applicable.

Reporting Risk-of-Bias Assessment
The selection of only studies written in English and the
exclusion of AI studies focused on text mining or NLP, image
processing, and statistical analysis could be identified as
potential risks for bias. Furthermore, the selection of papers
only from the MEDLINE database could be identified as a
potential bias risk because it potentially leads to the omission
of papers from other databases (eg, AI databases).

Results

Study Selection
The PubMed search query originally returned 4264 studies.
During the abstract and title screening process (phase 1), we
selected 93 (2.18%) of the 4264 articles for full-text screening
(phase 2). During phase 2, based on the inclusion criteria, of
these 93 research papers, 36 (39%) were selected. The
PRISMA-ScR flowchart (Figure 1) presents a detailed overview
of the selection procedure. The PRISMA-ScR checklist is
presented in Multimedia Appendix 1.
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Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flowchart. ADR: adverse drug reaction; AI: artificial
intelligence; NLP: natural language processing.

Study Characteristics
The included studies were published between 2015 and 2023,
with a notable increase in the number of studies after 2019
(Table 4).

Of the 36 studies, 19 (53%) originated from the United States,
4 (11%) from Korea, and 4 (11%) from the United Kingdom,
while the rest of the studies (n=9, 25%) were distributed across
a variety of other countries (Table 5).

Most of the studies (30/36, 83%) were conducted from academia
(Table 6).

Table 4. The distribution of studies through the years (n=36).

Studies, n (%)Years

1 (3)2015

2 (5)2016

3 (8)2017

2 (5)2018

2 (5)2019

4 (11)2020

10 (29)2021

7 (20)2022

5 (14)2023

aIncludes studies conducted in multiple countries.
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Table 5. Country of origin of the included studies (n=36)a.

Studies, n (%)Countries

19 (53)United States

4 (11)South Korea

4 (11)United Kingdom

3 (8)Canada

3 (8)Sweden

3 (8)China

3 (8)France

2 (6)Australia

2 (6)Netherlands

1 (3)Bangladesh

1 (3)Israel

1 (3)Belgium

1 (3)Denmark

1 (3)Taiwan

1 (3)Ireland

1 (3)Switzerland

aIncludes studies that involved >1 type of organization.

Table 6. Types of organizations that participated in the including studies (n=36)a.

Studies, n (%)Organizations

30 (83)Academia

9 (25)Health care

6 (17)Industry

2 (6)Government

1 (3)Regulatory bodies

aIncludes studies that involved multiple databases.
bEHR: electronic health record.
cSRS: spontaneous reporting system.
dADE: adverse drug event.

In terms of AI, of the 36 studies, 34 (94%) applied only
nonsymbolic AI, and 1 (3%) used only symbolic AI, while 1
(3%) study combined the symbolic and nonsymbolic AI
technical paradigms. Of the 34 nonsymbolic AI articles, 29
(85%) used classification tasks, whereas 3 (9%) selected
regression algorithms, 3 (9%) applied causality algorithms
(causal inference: n=2, 67%; causal discovery: n=1, 33%), and
only 1 (3%) applied an association rule mining technique. The
association rule mining study [17] followed a mathematical
framework called formal concept analysis to create association
rules between drugs and phenotypes to detect possible ADRs.
Moreover, of the 29 studies that used classification tasks, 6
(21%) used XAI techniques, of which 4 (67%) used Shapley
additive explanations, 1 (17%) used local interpretable
model-agnostic explanations, and 1 (17%) tested both
approaches.

Regarding RWD (Table 7), of the 36 articles, 28 (78%) focused
on the use of EHRs (from local hospital databases), 4 (11%)
used data from pharmacy dispensing records, and 3 (8%) used
administrative claims data, while 2 (6%) focused on patient
registries and 1 (3%) on insurance claims. In addition, a variety
of other sources were used, including RWD such as drug
information databases (3/36, 8%), spontaneous reports (3/36,
8%), adverse drug event databases (2/36, 6%), electronic
prescription data (2/36, 6%), and genetics and biochemical
databases (1/36, 3%).

Of the 36 studies, 23 (64%) used AI for ADR detection, 4 (11%)
examined ADR assessment, 2 (6%) focused on ADR monitoring,
7 (19%) investigated ADR prevention, and 2 (6%) used AI to
collect information about ADRs (Table 8).
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Table 7. Variety of data used in the development of artificial intelligence models in the included studies (n=36)a.

Studies, n (%)Type of database

28 (78)EHRsb

4 (11)Drug information databases

4 (11)Dispensing records from pharmacies

3 (8)SRSsc

3 (8)Administrative claims data

2 (6)Patient registries

2 (6)Electronic prescription data

2 (6)ADEd databases

1 (3)Insurance claims

aIncludes studies that examined multiple pharmacovigilance core activities.
bADR: adverse drug reaction.

Table 8. Description of pharmacovigilance core activities in the included studies (n=36)a.

Studies, n (%)Pharmacovigilance core activities

23 (64)ADRb detection

7 (19)ADR prevention

4 (11)ADR assessment

2 (6)ADR monitoring

2 (6)ADR information collection

aIncludes studies that involved multiple AI algorithms.
bXGBoost: extreme gradient boosting.
cLASSO: least absolute shrinkage and selection operator.
dNo algorithms.

The classification studies (29/36, 81%; Table 9) tested several
AI techniques, with random forest (RF) being the most
frequently used algorithm (17/29, 59%). However, the regression
studies (3/36, 8%) developed AI models only with extreme
gradient boosting (1/3, 33%) and logistic regression (2/3, 67%).

Finally, for the evaluation of AI models (Table 10), most of the
studies (24/36, 67%) reported area under the receiver operating
characteristic curve as the primary metric.

Of the 36 studies, 32 (89%) investigated specific drug safety
topics: 16 (50%) on specific adverse effects, 14 (44%) on
specific class of drugs, 8 (25%) on specific (class of) diseases,
6 (19%) on signal detection, 3 (9%) on drug interactions, 2 (6%)
on personalized drug safety, and 1 (3%) on vaccine safety (Table
11).
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Table 9. The types of artificial intelligence (AI) algorithms that the models developed in the included studies (n=36).

Studies, n (%)AI models and algorithms

Classification (n=29) a

17 (59)Random forest

10 (34)XGBoostb

8 (28)Artificial neural network

8 (28)Logistic regression

7 (24)Support vector machine

5 (17)Decision tree

2 (7)K-nearest neighbor

2 (7)Gradient boost

2 (7)LASSOc

1 (3)Extra tree

1 (3)Naïve Bayes

1 (3)Random survival forest

1 (3)Linear regression

1 (3)Regularized Cox regression

Regression (n=3)

1 (33)XGBoost

2 (67)Logistic regression

3 (100)Causalityd (n=3)

aIncludes studies that involved multiple model evaluation metrics.

Table 10. Evaluation metrics of artificial intelligence (AI) models developed in the included studies (n=36)a.

Studies, n (%)AI model evaluation metrics

24 (67)Area under the receiver operating characteristic curve

10 (28)Accuracy

8 (22)F1-score

11 (31)Precision

10 (28)Recall

6 (17)Negative predictive value

9 (25)Sensitivity

7 (19)Specificity

20 (56)Other (≤2)

aIncludes studies that examined multiple pharmacovigilance topics.
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Table 11. Specialized pharmacovigilance topics presented in the included studies (n=36)a.

Studies, n (%)Specialization of pharmacovigilance topics

16 (50)Specific adverse effect

14 (44)Specific (class of) drugs

8 (25)Specific (class of) disease

6 (19)Signal detection

3 (9)Drug interactions

2 (6)Personalized drug safety

1 (3)Vaccine safety

aIncludes studies that used multiple data sources.
bSIDER: Side Effect Resource.
cFAERS: Food and Drug Administration Adverse Event Reporting System.

Table 12 presents the diversity in the data sources used in the
included studies. Of the 36 studies, 29 (81%) chose proprietary
closed data sources (eg, specific hospital EHRs) for their
experiments. Along with EHR data, other data sources were
also used (eg, Food and Drug Administration Adverse Event
Reporting System and Side Effect Resource). Of the 36 studies,
2 (6%) selected the Stockholm Electronic Patient Record
Corpus. The remaining RWD sources (Medical Information
Mart for Intensive Care and the Osteoarthritis Initiative dataset)
are represented in only 2 (6%) of the 36 studies (n=1, 50% for
every database).

In terms of data models, of the 36 studies, 27 (75%) used
proprietary data models, 3 (8%) did not mention any data model,

5 (14%) used the Observational Medical Outcomes Partnership
Common Data Model (OMOP-CDM), and 1 (3%) used the
Sentinel model (Table 13).

Figure 2 presents the case studies examined in the included
articles. Notably, an important number of studies (20/36, 55%)
did not work in specific ADR case studies. Another significant
outcome is the diversity of case studies; the articles do not focus
on a specific drug, indication, or reaction. It can be observed
that chemotherapy drugs and their associated reactions in various
types of cancers emerge as slightly more prominent categories
in this review (Figure 3).

Table 12. Variety of data sources used in the included studies (n=36)a.

Studies, n (%)Data sources

29 (81)Proprietary closed data sources

12 (33)Other

3 (8)SIDERb

2 (6)FAERSc

2 (6)Stockholm Electronic Patient Record Corpus

aOMOP-CDM: Observational Medical Outcomes Partnership Common Data Model.

Table 13. Included studies’ distribution based on data models that the data are stored (n=36).

Studies, n (%)Data models

27 (75)Custom

5 (14)OMOP-CDMa

3 (8)Unknown

1 (3)Sentinel
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Figure 2. Association pathways between artificial intelligence models, data sources, and drug safety categories in the included studies. ADE: adverse
drug event; EHR: electronic health record; LASSO: least absolute shrinkage and selection operator; SRS: spontaneous reporting system; XGBoost:
extreme gradient boosting.
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Figure 3. Drugs, indications, and reactions in the included studies. (A) Drugs. (B) Indications. (C) Reactions.

Although most of the studies (21/36, 58%) used complex AI
algorithms (black boxes), such as RF (an ensemble method)
and artificial neural networks (ANNs), to construct their
prediction models in all ADR categories, many studies (15/36,
42%) used simple interpretable ML approaches such as logistic
regression. Moreover, it is important to highlight that all studies
worked on EHR databases, except for the adverse drug event
assessment category in which we detected a single study with
a vaccine database.

RWD databases were also used alongside other types of data;
for example, EHRs were mostly combined with spontaneous
reporting systems and drug information databases, vaccine data
with adverse drug event databases, and administrative claims
data with spontaneous reporting systems. Furthermore, some
of the studies (3/36, 8%) integrated different types of
observational data to develop AI models, combining pharmacy
dispensing records with EHRs and administrative claims data.
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Evaluation Results
Only 3 (8%) of the 36 studies included in this SR openly
provided their code. In addition, only 16 (44%) of the 36 studies

included a detailed description of data preprocessing pipelines
for RWD. Moreover, just 4 (11%) of the 36 studies evaluated
their methodology within a clinical environment (Table 14).

Table 14. Summary of code availability, data preprocessing, and clinical validation evaluation criteria (n=36).

Studies, n (%)Evaluation metrics

NoYes

33 (92)3 (8)Code availability

20 (56)16 (44)Data preprocessing

31 (86)5 (14)Clinical validation

In terms of trustworthy AI, only 5 (14%) of the 36 studies scored
<50% on the Fairness, Universality, Traceability, Usability,
Robustness, and Explainability–AI (FUTURE-AI) criteria
(Tables 15 and 16). Among the studies that achieved scores of

>75% [18-20], 3 (75%) out of 4 used external data to evaluate
their models, addressing the Universality criterion (Table S4 in
Multimedia Appendix 1).

Table 15. Distribution of included studies according to the FUTURE (Fairness, Universality, Traceability, Usability, Robustness, and Explainability)-AI

guidelines (n=36)a.

Studies, n (%)Data models

27 (75)Custom

5 (14)OMOP-CDMa

3 (8)Unknown

1 (3)Sentinel

aIncludes studies that fell into multiple FUTURE-AI and general categories.
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Table 16. Evaluation of articles included in the scoping review based on the Fairness, Universality, Traceability, Usability, Robustness, and
Explainability–AI (FUTURE-AI) and Code Availability, Data preprocessing and clinical validation criteria.

FUTURE-AI criteria
satisfaction (%)

Clinical useData preprocessingCode availabilityYearStudy

75NoYesNo2021Anastopoulos et al [18]

67NoYesNo2021Ward et al [21]

50NoYesNo2020Zhang et al [22]

67NoNoNo2021Kim et al [23]

67YesNoYes2020Morel et al [24]

67YesNoNo2021Zou et al [25]

42YesNoNo2018Liu et al [26]

67NoYesNo2022Zhu et al [27]

58NoYesNo2022Kidwai-Khan et al [28]

58NoNoNo2022Sharma et al [29]

50NoYesNo2022On et al [30]

58NoNoNo2021Datta et al [31]

75NoYesYes2019Bagattini et al [19]

58NoYesNo2021Gibson et al [32]

67NoYesNo2018Jeong et al [33]

58NoYesNo2015Zhao et al [34]

42NoYesNo2016Zhao and Henriksson [35]

75YesNoNo2019Segal et al [20]

67NoNoNo2017Boland et al [36]

58NoNoNo2021Wang et al [37]

58NoNoNo2022Li et al [38]

67NoNoNo2020Jin et al [39]

50NoNoNo2016Hansen et al [40]

67NoNoNo2021Mosa et al [41]

50NoNoNo2021Herrin et al [42]

67NoNoNo2022Pichardo et al [43]

58NoNoNo2021Puzhko et al [44]

42YesNoNo2017Souissi et al [45]

42NoNoNo2017Personeni et al [17]

67NoNoYes2020Zhou et al [46]

58NoNoNo2023Goyal et al [47]

58NoYesNo2023Wang et al [48]

58NoYesNo2023Hughes et al [49]

67NoYesNo2023Sharma et al [50]

58NoYesNo2023Akimoto et al [51]

58NoYesNo2022Zhang et al [52]

Risk of Bias in the Included Studies
Table 17 provides an overview of the distribution of biases
across the included studies. Notably, of the 36 studies, 21 (58%)
included selection biases, and 17 (47%) included confounding

biases. Algorithmic biases were identified in 14 (39%) of the
36 studies. Table S5 in Multimedia Appendix 1 presents the
detailed categorization of the included studies in the different
risk-of-bias categories.
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Table 17. Results of the risk-of-bias assessment for each included study organized into subsections that better characterize the artificial intelligence
(AI) models developed using structural real-world data in pharmacovigilance.

ReferencesBias categories and subcategories

Data-related biases

Selection bias

[18,19,21,22,26,28-30,33,38,41,42,44-47,49-52]Underrepresentation of certain demographic groups

[18,19,21,22,24,26,28-30,33,38,42,45-47,49-52]Overrepresentation of adverse drug events from specific health care systems or regions

Measurement bias

[18,20,21,24,32,38,41,44,45]Inconsistent adverse drug event reporting practices

[20,24,32,38,46,51,52]Variations in diagnostic criteria or coding practices for medical conditions

Temporal bias

[17,18,21,24,34,39,40,44,45,51,52]Changes in prescribing patterns or drug formulations over time

[34,39,40,44,45,51]Seasonal variations in disease prevalence or reporting behaviors

Algorithm-related biases

Algorithmic bias

[17,18,27,32,36,37-39,41,45,46,48-50]Differential performance in adverse drug event detection across patient subgroups

[17,18,27,32,36-39,41,45,46,48-50]Biased risk assessments for certain medications or populations

Implicit bias

[17,18,24,31,41,44]Overlooking potential drug interactions more common in specific ethnic groups

[17,24,31,38,41,44]Underestimating the severity of side effects reported by certain demographics

Deployment and interpretation biases

Confounding bias

[18,21,22,25,27,31,34,36,44,46-49,51]Failing to consider comorbidities when assessing drug safety profiles

[18,21,22,25,27,28,31,34,36,40,46-49,51]Not accounting for polypharmacy effects in adverse drug event analysis

Automation bias

[19,25,49,50]Overlooking rare or unusual adverse drug events not flagged by AI systems

[19,24,49,50]Reduced critical evaluation of AI-generated safety signals by human experts

Interesting Results of Individual Studies
It is important to mention that 6% (2/36) of the studies
successfully combined AI and a self-controlled case series
(SCCS) model for ADR detection. Morel et al [24] introduced
the convolutional SCCS (ConvSCCS) model in which the SCCS
model is enriched with a convolutional neural network. This
allows the ConvSCCS model to consider a few longitudinal
data dimensions (eg, drug exposure) from observational data
and predict a potential ADR without a prior definition of risk
windows, which is mandatory in SCCS models. The ConvSCCS
model was tested in glucose-lowering drugs and the risk of
bladder cancer case study. Another interesting advantage shown
by the results is that the ConvSCCS model is useful for
analyzing high-dimensional data while requiring minimal data
preprocessing. Zhang et al [22] developed the neural SCCS
(NSCCS) model to detect probable drug interactions and control
for time-invariant confounders. The NSCCS model was tested
in the OMOP-CDM reference dataset [53]. Both the ConvSCCS
and NSCCS models outperformed traditional SCCS statistical
models in comparative analyses; the ConvSCCS model
demonstrated superior precision and computational speed, while

the NSCCS model achieved an area under the receiver operating
characteristic curve score of 0.779 [22].

Furthermore, Kidwai-Khan et al [28] focused on improving the
prediction of preventable adverse events by integrating in an
AI decision support tool, EHRs with genetic data (the presence
or absence of genes contraindicated with a person’s medication).
This is the only study in this review that combined EHRs with
genetic data and 1 (25%) of the 4 studies that used XAI methods.
In addition, all AI models achieved high evaluation scores
(>95%).

A few ADR prediction studies (3/36, 8%) introduced innovative
ideas on feature preprocessing. Jeong et al [33] developed an
ML prediction model in which the features are calculated from
algorithms such as the “comparison of extreme laboratory test”
results, “comparison of extreme abnormality ratio”, and
“prescription pattern around clinical events” to help determine
whether a drug-laboratory event pair is associated. A different
approach was proposed by Wang et al [37] who addressed
problems with low-quality observational data (eg, missing data)
by creating patient embeddings and treating patients “as bags
with the various number of feature-value pairs, called instances.”
This method led to the development of the final AI model
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(AMI-Net3), which achieved exceptional performance. Chen
et al [54] also proposed an embedding methodology, called
“physiological signal embeddings.” This study proved that
training deep embedding models on physiological signals could
lead to better forecasts of adverse outcomes. In addition, this
methodology enables data transferability through the
physiological signal embeddings models.

Only 1 (3%) of the 36 studies developed an application for the
prediction of ADRs. Mosa et al [41] leveraged the
interoperability of a decision tree ML model and, based on their
results, designed a rule-based mobile app to assess the risk of
specific ADRs and indications.

A completely different approach to ADR prediction was
introduced by Liu et al [26]. In this study, the authors applied
an ML method to develop a prediction model for osteoarthritis
ADRs in analgesic drugs. Afterward, the authors used
explainability techniques to identify patients who might be
prescribed analgesic drugs without the risk of osteoarthritis
ADRs. The diversity of this study is addressed in a different
scope: instead of predicting ADRs based on a patient’s medical
history, the model focuses on identifying the characteristics that
make the patient suitable for a medication, specifically by
considering the presence or absence of an ADR.

Recently, the causal ML paradigm was introduced into
pharmacovigilance through the studies of Wang et al [48] and
Zhang et al [52], who applied causal inference with average
treatment effects and causal discovery with directed acyclic
graphs, respectively. Wang et al [48] used causal ML models
to make a representation of a randomized clinical trial with EHR
data. Their results successfully identified both well-known and
new medications that could cause the suspected ADR in their
case study. Furthermore, Zhang et al [52] created a causal graph
for a drug-event combination and compared the results from 2
causal discovery algorithms. Their results showcased the causal
discovery algorithms’ abilities to explore the mechanisms of
the suspect drug that could lead to a potential ADR, uncovering
previously unknown causal links.

Only 1 (3%) study focused on the use of symbolic AI [43]
compared to those investigating the use of ML (35/36, 97%)
and 1 study combine symbolic and nonsymbolic AI. Notably,
Pichardo et al [43] stand out for integrating ontologies and ML,
namely combining symbolic and nonsymbolic AI. The objective
of this study is to examine the performance of a clinically
informed framework for the prediction of short-term ADRs.

Furthermore, very few studies (5/36, 14%) focused on the
clinical evaluation of the proposed ML approach. Segal et al
[20] presented a clinical decision support system designed to
provide medication error alerts to prevent ADRs, demonstrating
significant results—40% of the prescriptions were altered based
on these alerts. Herrin et al [42] compared the effectiveness of
their proposed ML scheme to that of an established clinical
practice, specifically the HAS-BLED approach, to evaluate a
patient’s risk of gastrointestinal bleeding.

Synthesized Findings
Although the included studies followed widely used approaches
in AI and pharmacovigilance to predict potential ADRs,

primarily using EHR data, such as predicting ADR outcomes
using well-known ML model architectures, the aforementioned
studies follow fundamental methodologies. In terms of data, it
describes several interesting processes such as the creation of
patient embeddings and the application of the “comparison of
extreme laboratory test” results, “comparison of extreme
abnormality ratio”, and “prescription pattern around clinical
event” algorithms for calculating input data for the ML model.
Furthermore, it is described a variety of innovative AI
algorithms such as SCCS models, causal ML, and symbolic AI.
Finally, out-of-the-box pharmacovigilance approaches were
followed, such as identifying patients suitable for specific
treatments based on their ADR profiles.

Discussion

The findings of this study enabled us to identify innovative
ideas, spot existing limitations, and propose potential directions
for future work in this field.

Principal Findings
In summary, the number of studies on AI methodologies applied
to RWD for pharmacovigilance purposes has significantly
increased in the last 5 years—most of the included studies
(28/36, 78%) were published after 2019, with the United States
contributing the most publications in this field (19/36, 53%).

Comparing this review study with 3 recent reviews from 2022
to 2023 in the same field, we conclude that only the study by
Kaas-Hansen et al [55] could be considered a study with the
exact focus with our review. Their review included only 7
scientific papers because they restricted their selection to studies
published between 2015 and 2021 and involving >1000 patient
records. Their findings are similar to ours in terms of dominant
AI solutions (classification) and the type of RWD used (EHR).
Finally, it is essential to note that their review, like ours,
highlights the limited adoption of widely used common data
models, such as the OMOP-CDM.

In terms of risk of bias, selection biases were due to the fact
that most of the studies (15/36, 42%) did not include patients
from >1 data source (regional hospital [46] or insurance claims
database [24]) in their models. Regarding confounding, while
high-dimensional RWD offer a significant amount of
information, they also contain substantial noise and null values.
Sequentially, features that could be potential confounders are
eliminated from the final dataset.

Pharmacovigilance
The reviewed papers focused on using ML to detect ADRs to
confirm whether previously known ADRs could have been
identified using RWD. Another major theme identified was the
prediction of ≥1 ADRs based on the classification of patients
with different characteristics, ultimately aiming to support
personalized ADR prevention. However, there was a lack of
studies investigating new, potential pharmacovigilance signals.
Regarding the investigated ADRs, there was a slightly higher
interest in chemotherapy drugs for different types of cancers
due to the high incidence of serious reactions associated with
this treatment.
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Finally, it is important to highlight that only 4 (11%) of the 36
studies in this review were tested in real-world clinical
environments, which leads us to conclude that AI models may
lack generalizability or that health care professionals may lack
trust in AI models. By contrast, the trustworthy AI evaluation
based on the FUTURE-AI guidelines proved that only a few
studies (4/36, 11%) failed to satisfy half of the criteria,
indicating relatively high research quality.

RWD Preprocessing
In terms of RWD, EHRs were the most commonly used data
source. EHRs are multidimensional, offering data that could be
crucial for detecting postmarketing ADRs. At least in principle,
EHRs could serve as an invaluable data source for investigating
potential drug synergies or interactions across diverse
populations. Furthermore, the variety of information in patient
records could be an advantage in the creation of multimodal
datasets, for example, by integrating biological, signaling
pathway, and drug information databases.

However, the use of EHRs comes with significant burdens
because they contain sensitive personal data, leading to limited
access. Medical Information Mart for Intensive Care is the only
openly available EHR dataset for researchers, but it is not
commonly used in pharmacovigilance (only 2/36, 6% studies
used it).

Moreover, it is important to mention that RWD preprocessing
is challenging due to its complexity and real-world nature
(biases, errors, gaps, noise, etc). Consequently, less than half
of the articles (17/36, 47%) described in detail the data
preprocessing step in their pipelines.

Another noteworthy outcome is that widely adopted data models
such as the OMOP-CDM, Informatics for Integrating Biology
& the Bedside, and Sentinel appeared sporadically in the studies.
This could be attributed to the fact that the use of EHR data and
AI models is relatively new. However, it should be noted that
initiatives in this direction are emerging (eg, the Assessment of
Pre-trained Observational Large Longitudinal models in
Observational Health Data Sciences and Informatics initiative
[56]).

Finally, it should be noted that RWD have a very substantial
longitudinal dimension and questionable quality (due to gaps,
errors, etc). As such, leveraging RWD for pharmacovigilance
purposes requires the development of new approaches that focus
on using time-related sequential information. While several
attempts have been made to exploit this temporal aspect of RWD
[19,33-35], validating AI and ML algorithms focusing on
time-series rationale for pharmacovigilance signal detection
remains a critical issue.

AI Models
The detection of potential pharmacovigilance signals is a
challenging procedure. As a result, the development of ML
models to support the detection of ADR signals could have a
significant impact. We can outline 2 major approaches for ADR
signal detection. The first focuses on creating an AI tool that
could discover unknown relationships between drugs and
conditions, highlighting potential causal associations. The

second approach emphasizes AI pipelines tailored to specific
ADRs, where the input data for the final ML model are
preprocessed based on prior medical knowledge of the
drug-event combination.

The AI models identified in this review are generally complex,
with ensemble methods such as RF being the most commonly
used. A significant number of studies also applied ANNs. As
RWD contain a substantial amount of diverse information, the
relationships between different features may not be linear.
Hence, the use of black box models (eg, ensemble methods and
ANNs) is essential for discovering more complicated
associations in a dataset beyond linear relationships.

On the basis of the review papers, there is a noticeable lack of
use of XAI models (ie, local interpretable model-agnostic
explanations and Shapley additive explanations models). Health
care professionals highlight the necessity to understand the
motifs between AI models’ tasks to accept the decisions made
by the algorithms. This could not only lead to the biological
translation of the results based on existing knowledge but also
reveal new information about a disease, a medication, and so
on. In terms of pharmacovigilance, XAI models applied to RWD
could bring evidence about unknown confounders in an ADR
and provide more informative results for pharmacovigilance
experts regarding the causes of a potential pharmacovigilance
signal. Although XAI methods’ results are tested extensively
in the health care domain, we found that only 6 recent studies
(4/36, 11% are included in this review) had applied them in the
pharmacovigilance domain [21,23,27,28,54,57] (4 in 2021, 2
in 2022). Another novel approach discussed extensively in the
explainability field is the newly introduced causal ML or causal
deep learning algorithm, which combines AI and causal
inference to uncover underlying cause-and-effect relationships
between variables. The complexity of RWD presents a challenge
that causal ML could potentially solve more efficiently by
providing meaningful explanations of the causal relationships
between variables [58]. These innovative AI models could serve
as a good hypothesis for future work because they seek and
present the relationships between different variables in RWD
sources with a more informative structure than traditional AI
models. They have already been applied efficiently in
pharmacological treatment patterns [59]. In this review, only 3
(8%) of the 36 studies applied causal deep learning to EHR data
[25,48,52].

Finally, a major problem identified based on the SR findings is
the lack of code availability. This issue hinders the
reproducibility of the models, preventing further testing on
different datasets and raising questions about the developed AI
models’ robustness and generalizability.

Strengths and Limitations
The strengths of this review include the use of a considerable
number of studies (n=36), providing a thorough knowledge of
the specific scientific field. Besides, we compared our findings
with those of the most recent review in the same field and
analyzed the differences.

Nevertheless, this systematic review has several limitations.
First, we only included articles from the MEDLINE database.
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As such, we may have excluded other existing AI approaches
to structural RWD in the field of pharmacovigilance that could
be available in AI databases. Second, because of the variation
in the articles’ methodologies, we were unable to conduct a
meta-analysis of the quantitative results. Finally, it is important
to mention the limited number of symbolic AI studies in this
review (4/36, 11%) [17,45,60,61]. The construction of
knowledge graphs (KGs) usually requires the use of text mining
procedures such as NLP and focused on real text such as clinical
notes. As we excluded NLP studies from our query, we assume
that this contributed to the small number of symbolic AI articles
(n=36) included in our review.

Current Gaps and Potential Future Work Paths
Detecting new pharmacovigilance signals using ML approaches
requires evidence of a causal association between the suspect
drug and the reaction. XAI models can assist pharmacovigilance
professionals in this process. To this end, further investigation
into causal ML and causal deep learning approaches could be
a highly impactful line of research for identifying
pharmacovigilance signals from RWD.

Another gap identified in this SR that could indicate future work
paths could be the use of multitask learning approaches.
Multitask learning is an ML methodology that takes as input 1
dataset to execute multiple prediction tasks. RWD, such as EHR
data, are rich data sources that could support >1 task (eg,
pharmacovigilance and pharmacoepidemiology); for instance,
a multitask learning model could predict an adverse drug event,
the severity of an adverse drug event, and the likelihood of the
same adverse drug event occurring with other drugs in a patient.

Furthermore, combining ML approaches with symbolic AI is
a line of work that offers further potential for exploration.
Combining ML with ontologies and automatic reasoning upon
KGs could enable new AI approaches (eg, neurosymbolic AI)
and provide new insights based on well-established expert

knowledge formed as a KG. Moreover, using ontologies and
KGs could support integration with other kinds of data sources
(eg, data sources containing low-level biochemical or
pharmacokinetics and pharmacodynamics information and
signaling pathway information).

Finally, exploiting the currently formed federated data networks
could also be an interesting area for future research; for example,
the European Health Data & Evidence Network is currently
setting up a network of >180 data partners across Europe, using
the OMOP-CDM as the main data model [62]. The adoption of
the OMOP-CDM and the potential exploitation of such data
networks would significantly enhance the prospects of potential
AI models used for pharmacovigilance.

Conclusions
In this paper, we reviewed scientific papers focusing on AI
approaches to structured RWD for pharmacovigilance purposes.
It should be noted, as a key finding, that most models are
designed not for pharmacovigilance signal detection but for
personalized ADR prediction. Furthermore, XAI methods and
causal ML and causal deep learning are not investigated in
depth. Moreover, there are no identified gold standard
methodologies for data preprocessing of structured RWD for
pharmacovigilance. Finally, an evaluation of the already
developed AI models in external data is difficult because of
code unavailability and a lack of data access.

Therefore, there is an essential need for more informative XAI
models that can be validated on external datasets and for a more
detailed description of RWD preprocessing pipelines and
methods to examine potential pharmacovigilance signals in
clinical practice. Implementing AI approaches in RWD analysis
could tackle the problems of pharmacovigilance signaling
underreporting and support the vision of personalized ADR
management.
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Abbreviations
ADR: adverse drug reaction
AI: artificial intelligence
ANN: artificial neural network
ConvSCCS: convolutional self-controlled case series
DARWIN: Data Analysis and Real World Interrogation Network
EHR: electronic health record
FUTURE-AI: Fairness, Universality, Traceability, Usability, Robustness, and Explainability–Artificial Intelligence
ICSR: individual case safety report
KG: knowledge graph
ML: machine learning
NLP: natural language processing
NSCCS: neural self-controlled case series
OMOP-CDM: Observational Medical Outcomes Partnership Common Data Model
PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses
PRISMA-ScR: Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping
Reviews
RF: random forest
RWD: real-world data
SCCS: self-controlled case series
XAI: explainable artificial intelligence
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