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Abstract

Background: The shift in medical care toward prediction and prevention has led to the emergence of digital health care as a
valuable tool for managing health issues. Aiding long-term follow-up care for cancer survivors and contributing to improved
survival rates. However, potential barriers to mobile health usage, including age-related disparities and challenges in user retention
for commercial health apps, highlight the need to assess the impact of patients’ abilities and health status on the adoption of these
interventions.

Objective: This study aims to investigate the app adherence and user experience of commercial health care apps among cancer
survivors using an extended technology acceptance model (TAM).

Methods: The study enrolled 264 cancer survivors. We collected survey results from May to August 2022 and app usage records
from the app companies. The survey questions were created based on the TAM.

Results: We categorized 264 participants into 3 clusters based on their app usage behavior: short use (n=77), medium use
(n=101), and long use (n=86). The mean usage days were 9 (SD 11) days, 58 (SD 20) days, and 84 (SD 176) days, respectively.
Analysis revealed significant differences in perceived usefulness (P=.01), interface satisfaction (P<.01), equity (P<.01), and
utility (P=.01) among the clusters. Structural equation modeling indicated that perceived ease-of-use significantly influenced
perceived usefulness (β=0.387, P<.01), and both perceived usefulness and attitude significantly affected behavioral intention and
actual usage.

Conclusions: This study showed the importance of positive user experience and clinician recommendations in facilitating the
effective usage of digital health care tools among cancer survivors and contributing to the evolving landscape of medical care.

(J Med Internet Res 2024;26:e55176) doi: 10.2196/55176
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Introduction

As the paradigm of medical care has shifted toward prediction,
prevention, personalization, and participation, digital health
care has emerged as a promising tool for managing
health-related issues [1-3]. Digital health care has the potential
to become an effective aid for long-term follow-up care among
cancer survivors, contributing to increased survival rates [4-8].
While the evidence for the effectiveness of digital health care
has been accumulated through well-designed clinical studies,
there are potential barriers. Compared to 78% of cancer
survivors who are aged 60 years or older, smartphone ownership
and internet usage are lower among older people [9-12]. Also,
users’ digital literacy, socioeconomic status, and user interface
(UI) of apps are hurdles to successful digital health intervention
[13-17].

Though long-term use of health care apps has been linked to
better outcomes, many commercial health apps face challenges
in user retention [18,19]. To understand how we could make
patients to use health care applications effectively, it is important
to identify the factors influencing the user’s adoption of digital
interventions. The technology acceptance model (TAM)
provides a theoretical framework that identifies and measures
various factors influencing users’ adoption and usage of digital
technology; it is a useful tool for understanding technology
acceptance [20,21]. Furthermore, accessibility, convenience,
and self-efficacy are key facilitators for adopting digital health
applications; thus, it is essential to examine the impact of the
ability of patients with cancer to use mobile technologies and
their health status on the usage of mobile health interventions
[5,22,23].

There have been many studies on the process of developing
apps for specific health problems, considering patients’ needs
and user-centered design [24]. However, from the perspective
of older patients with cancer who use conventional commercial
health management apps, this consideration is far from a
real-world situation. In addition, when recommending or
promoting commercial health apps to improve the quality of
life of patients with cancer, there is a lack of evidence on what
factors can make patients use them better and find them more
helpful [8,25].

Therefore, the objective of this study is to investigate the
association between user characteristics, user experience, and
the level of compliance with commercial smartphone health
apps among patients with cancer. We analyzed the relationship
between application usage logs and survey data to devise an
extended TAM model for effective elucidation of the
relationships among the variables that contribute to the actual
usage of the apps.

Methods

Study Design
This study aimed to provide insights into the factors that affect
digital health care app acceptance and sustained use, proposing
an enhanced TAM. The survey included various categories such
as socioeconomic demographics (D), usual usage of
smartphones, health management (HM) habits, user experience
(app usability [Us]), interface satisfaction (IS), equity (Eq),
utility (Ut), enjoyment (Ej), active willingness to use the app
(AW), attitude toward usefulness (AU), information
management (IM), preference for human interaction (HI) via
app, willingness to continuous use (CU), preference of app
feature (PF), and external motivation given by researchers (ie,
attending physician of the study subject). The study enrolled
264 patients, part of a randomized controlled trial (RCT)
involving 960 cancer survivors (breast, colorectal, or lung
cancer), excluding a control group and accounting for a 20%
dropout rate, from a pool of patients who had used the app for
at least 6 months, aimed at assessing the impact of mobile Health
apps on recovery. The description of the features of the 4 apps
used in the prospective RCT is provided in Multimedia
Appendix 1. And we employed structural equation modeling
(SEM) to test hypotheses regarding the influence of motivation,
perceived usefulness, and perceived ease of use on users'
attitudes and behavioral intentions toward the app.

Questionnaire Design
The development of the survey was based on the TAM and prior
research exploring perceived ease-of-use and perceived
usefulness, commonly used in studies related to mobile health
care, smartphone adoption, and continuous usage intention. The
survey categories and items were selected based on previous
studies investigating the factors influencing the acceptance of
digital health care products and services [26-36]. The set of
variables and reference articles relating to each TAM variable,
category, and operational definition are shown in Table S1 in
Multimedia Appendix 1. The final survey categories were as
follows: D, use of smartphone, HM, Us, IS, Eq, Ut, Ej, AW,
AU, IM, HI, CU, PF, and motivation (M). The matching of each
category with TAM variables is shown in Figure S1 in
Multimedia Appendix 1.

The response formats for each survey item were measured
according to the nature of the questionnaire. These formats
included the 5-point Likert scale (1=strongly disagree to
5=strongly agree), yes or no responses, single-choice selections,
multiple-choice selections, and open-ended responses. The
survey was created as a web-based individual survey link and
sent to respondents on their devices (smartphones or PCs). For
a complete description of the survey, see Multimedia Appendix
1.
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Enrollment Process
Among the 960 participants involved in a previous protocol
study, a control group of 240 individuals who did not use the
app was excluded [37-39]. During the recruitment period,
patients who presented for medical visits after a minimum of 6
months since the initiation of app usage were approached to
obtain research participation consent. The sample size for the
research participants was calculated based on the survey sample
size formula [40]. With a confidence level of 95% and a margin
of error of 5%, considering the population proportions for breast,
colorectal, and lung cancer (33%), the appropriate sample size
was determined to be 252 out of the total population of 720.
Additionally, hypothesis testing was conducted using Cronbach
α with a minimum acceptable value of .95, an expected value
of .97, a significance level of .05 (2-tailed), a power of 80%,
an expected dropout rate of 5%, and a total of 90 survey items.

The sample size calculator determined that a sample size of at
least 63 respondents was required to achieve valid reliability.

The survey was conducted from May 17, 2022, to August 26,
2022. A dropout rate of 20% was considered during patient
recruitment, and a total of 309 patients were available for
enrollment during the recruitment period. Among them, 17
(5.5%) patients who refused to participate in the survey were
excluded. After receiving the survey link, the participants were
requested to complete the survey within the designated research
period. Participants who failed to complete the survey within
1 week received a reminder, and those who did not finish it
within an additional week were deemed to have dropped out of
the study. Out of 292 (94.5%) participants who agreed to
participate in the survey, 28 (9.1%) did not complete it during
the study period and were excluded. The final number of
participants who completed the survey was 264 (85.4%; Figure
1).

Figure 1. Flow diagram summarizing the enrolment process.

Data Collection
The app used in the study is commercially available and can be
downloaded from the Korean App Store. In the case of paid
apps, the research funds were used to cover the costs of using
the app [37-39]. The app usage data were collected from the
app development company, with the consent of the research
participants. Information collected included app access
timestamps and frequency of access.

Data Analysis

Questionnaire Result Analysis
We used chi-square cross-analysis to calculate the P values for
survey items with binary responses. For survey items with
continuous variable responses, such as Likert scale responses,
we used the Wilcoxon rank sum test to calculate the p-values.
In both cases, we compared 2 groups at a time rather than
analyzing all 3 groups (short use, medium use, and long use)
simultaneously. The data analysis was performed using R
(version 4.3.0). For all survey items, excluding the responses
related to continuous variables and open-ended responses, the
responses were coded using numerical values without assigning
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any inherent meaning to the magnitude of the numbers. These
coded responses were then used for calculations as nominal
variables.

For binary survey responses (yes or no), we coded the 264
participants’ answers as follows: positive experiences as 1 and
negative experiences as 0. We then calculated the ratio of
positive responses within each category based on the total
number of questions in that category. Participants were grouped
as high or low within each category based on their scores
compared to the category average. If an individual’s score in a
specific category exceeded the category average, they were
categorized as high; otherwise, they were classified as low.
Participants were labeled as positive or high if more than half
of their category groups were high; otherwise, they were
classified as negative or low.

Actual App Usage Data Analysis
The participants’ actual app usage data were obtained using the
dates and times when the app was opened for each usage during
a period of 180 days. By counting the number of app access
days for each patient, 3 components were calculated for
K-means clustering: mean number of use, total term usage, and
number of app access days [41]. The mean number of use was
calculated as an average of app usage days based on the first
usage date of the app. Total term usage, measured in days, was
the difference between the dates of the first and last app access.
The number of app access days refers to the count of days a
patient accessed the app within the 180 days starting from their
initial access date.

We classified patients into 3 clusters: short use, medium use,
and long use [42]. The short-use group comprised patients who
only used the app for 12 weeks during the intervention period.
The medium-use group comprised patients who used the app
for more than 12 weeks but did not use it persistently beyond
that period. The long-use group consisted of patients who used
the app continuously. The data analysis was performed using
Python (version 3.8.5; Python Software Foundation).

Structural Equation Modeling
Descriptive statistics and SEM using latent variable analysis
were performed using the Lavaan software (version 0.6-15;
Ghent University) in R (version 4.3.0; R Foundation for
Statistical Computing). As this study’s sample was from 264
patients, the sample size was adequate for model analysis [43].
A P value less than .05 was considered statistically significant.
In our proposed model, we introduced a new node called
“Motivation” to the existing TAM [44] and hypothesized that
it could influence (perceived) usefulness, perceived ease-of-use,
and behavioral intention. Moreover, perceived usefulness was
changed to (perceived) usefulness, as the apps were
commercially available and had already demonstrated their Ut.
The “Motivation” node represented how the participants felt
while participating in the clinical study using the app. The
schematic representation of the proposed theoretical model is
presented in Figure 2. Moreover, the comparative fit index,
Tucker-Lewis index, root mean square error of approximation,
and standardized root mean square residual were used to identify
the fit of the theoretical model.

Figure 2. Enhanced TAM (technology acceptance model; tailored for a digital health care app).

Therefore, through the SEM, we attempted to answer various
hypotheses as follows: motivation will positively affect
perceived usefulness and perceived ease of use. Moreover,
external variables will positively affect perceived usefulness
and perceived ease of use. The perceived ease-of-use of
application users will positively affect their (perceived)
usefulness, their attitude toward the application, and their
behavioral intention to continue using the application. The
(perceived) usefulness of application users will positively affect
their attitude toward the application and their behavioral
intention to continue using the application. The attitude of
application users toward the application will positively affect
their behavioral intention to continue using the application.

Finally, the behavioral intention of application users will
positively affect their actual usage of the application.

Ethical Considerations
This study was approved by the institutional review board of
Asan Medical Center, Korea (IRB 2021-1631) and adhered to
relevant ethical guidelines. Informed consent was obtained from
all participants before their involvement in the study, with
assurances of anonymity and confidentiality provided.
Participants were briefed on the study's objectives and how the
collected data would be used. Additionally, stringent measures
were in place to protect the privacy and confidentiality of study
data, including secure storage within the hospital premises. Each
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participant received a US $7 gift voucher as compensation for
their time.

Results

Categorizing Patients According to Their App Usage
Behavior Using K-Means Clustering
We classified the participants into 3 clusters based on their app
usage behavior. The clusters were labeled S, M, or L (short use,
medium use, and long use, respectively) as shown in Figure 3.

There were 77 short-use patients: the average of their mean
number of use was 9 (SD 11) days, the mean of total term of
use was 21 (SD 21) days, and the mean number of app access
days was 7 (SD 14) days. The means for the 101 medium-use
patients were 58 (SD 20) days for mean number of use, 144
(SD 36) days for total term of use, and 55 days for number of
app access days. Finally, the 86 long-use patients had the
following means: 84 days for mean number of use, 176 days
for total term of use, and 154 days for number of app access
days.

Figure 3. Results of K-means clustering on sample (n=264). Results of K-means clustering for (a) 3 components: number of app-access days (use_days),
mean number of use (mean_usage), and total term of use (max_dd); (b) max_dd–mean_usage perspective; (c) max_dd–use_days perspective; and (d)
mean_usage–use_days perspective.

Gender distribution significantly varied across groups (P=.02),
with a higher proportion of males in the short group (40.3%)
compared to the long group (19.8%). The median age ranged
from 54 to 57 years across groups (P=.08). Participants from
urban areas were more prevalent in the long group (60.5%),
while those from rural areas were less represented (P=.06).

Education levels differed significantly across the group (P=.04),
where a higher proportion of individuals in the short group had
a more middle school graduate or lower compared to the
medium and long groups. Even though high school graduates
were fairly evenly distributed across the groups, university
graduates or higher were most prevalent in the medium group.
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Marital status did not differ significantly across groups P=.27).
App usage varied notably (P<.01), with higher usage of Noom
in the long group (52.3%), while Walkon and Second Doctor
were more common in the medium group (46.5% and 28.7%,
respectively). Breast cancer was the most common cancer type,
especially in the long group (51.2%), with significant differences

in cancer type distribution across groups (P=.03). Clinical stage
distribution showed no significant differences (P=.39), though
stage 1 was most prevalent in all groups, particularly in the long
group (66.3%). The details of the demographics for each group
are available at Table 1.

Table 1. Demographics of the participants in respect to their term use.

P valueLong (n=86)Medium (n=101)Short (n=77)Total (N=264)Variables

.02aGender, n (%)

17 (19.8)30 (29.7)31 (40.3)78 (29.5)Male

69 (80.2)71 (70.3)46 (59.7)186 (70.5)Female

.0854.5 (21-77)54.0 (21-74)57.0 (30-79)54.0 (21-79)Age (years), median (range)

.06Residence, n (%)

52 (60.5)45 (44.6)35 (45.5)132 (50.0)Urban

34 (39.5)56 (55.4)42 (54.5)132 (50.0)Rural

.04Education, n (%)

5 (5.9)5 (5.0)11 (14.3)21 (7.9)Middle school graduate or lower

32 (37.2)28 (27.7)27 (35.1)87 (33.0)High school graduate

49 (56.9)68 (67.3)39 (50.6)156 (59.1)University graduate or higher

.27Marital status, n (%)

10 (11.6)4 (4.0)3 (3.9)221 (83.7)Married (having a spouse)

67 (77.9)90 (89.1)64 (83.1)17 (6.4)Never married

9 (10.5)7 (6.9)10 (13.0)26 (9.8)Other

.74Monthly household income (US $), n (%)

5 (5.8)5 (5.0)5 (6.5)15 (5.7)Less than 1150-2300

31 (36.0)44 (43.6)31 (40.3)106 (40.2)2300-4600

47 (54.7)49 (48.5)36 (46.8)132 (50.0)4600 and above

3 (3.5)3 (3.0)5 (6.5)11 (4.2)Does not wish to answer

<.01Used app, n (%)

33 (38.4)47 (46.5)17 (22.1)97 (36.7)Walkon

45 (52.3)24 (23.8)12 (15.6)81 (30.7)Noom

8 (9.3)29 (28.7)22 (28.6)59 (22.3)Second Doctor

0 (0)1 (1.0)26 (33.8)27 (10.2)Efilcare

.03Cancer type, n (%)

44 (51.2)48 (47.5)22 (28.6)114 (43.2)Breast cancer

13 (15.1)26 (25.7)25 (32.5)64 (24.2)Colon cancer

29 (33.7)27 (26.7)30 (39.0)86 (32.6)Lung cancer

.39Clinical stage (p-stage), n (%)

57 (66.3)54 (53.5)43 (55.8)154 (58.3)Stage 1

17 (19.8)24 (23.8)21 (27.3)62 (23.5)Stage 2

8 (9.3)13 (12.9)10 (13.0)31 (11.7)Stage 3

4 (4.7)10 (9.9)3 (3.9)17 (6.4)Stage 4

aThe italicized values represent statistically significant (P<.05) comparisons.
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Relationship Between App Usage and TAM Factors
Next, we conducted a comparative analysis using the survey
categories corresponding with the TAM structure variables. We
calculated the average positive response scores for each category
and classified individuals into high or low groups based on

whether their scores were above or below the mean score,
respectively. Furthermore, we compared the proportions of the
short-use, medium-use, and long-use cluster groups between
the High and Low groups (Table 2). Moreover, the overall
survey response groups are available in Table S2 in Multimedia
Appendix 1.

Table 2. Distribution of clustering groups by survey category according to the technology acceptance model (TAM) structure.

P valueUsage cluster categoryTotal

(N=264)

Technology acceptance model (TAM) structure (elements, questionnaire,
and response result groups)

Long (n=86)Medium
(n=101)

Short (n=77)

Perceived usefulness, n (%)

.01aUtility

70 (81.4)78 (77.2)48 (62.3)196 (74.2)High

16 (18.6)23 (22.8)29 (37.7)68 (25.8)Low

.54Enjoyment

52 (60.5)45 (44.6)23 (29.9)120 (45.5)High

34 (39.5)56 (55.4)54 (70.1)144 (54.5)Low

Perceived ease-of-use, n (%)

<.01Interface satisfaction

73 (84.9)78 (77.2)45 (58.4)197 (74.6)High

13 (15.1)23 (22.8)32 (41.6)67 (25.4)Low

<.01Equity

72 (83.7)77 (76.2)44 (57.1)193 (73.1)High

14 (16.3)24 (23.8)33 (42.9)71 (26.9)Low

.01Usability

68 (79.1)75 (74.3)40 (51.9)183 (69.3)High

18 (20.9)26 (25.7)37 (48.1)81 (30.7)Low

Attitude, n (%)

.92Active willingness to use the app

52 (60.5)46 (45.5)17 (22.1)115 (43.6)High

34 (39.5)55 (54.5)60 (77.9)149 (56.4)Low

.10Attitude toward usefulness

69 (80.2)75 (74.3)45 (58.4)189 (71.6)High

17 (19.8)26 (25.7)32 (41.6)75 (28.4)Low

.32Information management

62 (72.1)65 (64.4)41 (53.2)168 (63.6)High

24 (27.9)36 (35.6)36 (46.8)96 (36.4)Low

.03Human interaction

54 (62.8)47 (46.5)34 (44.2)135 (51.1)High

32 (37.2)54 (53.5)43 (55.8)129 (48.9)Low

aThe italicized values represent statistically significant (P<.05) comparisons.

The short-use clustering group exhibited higher proportions of
low respondents than the other groups in all categories.
Furthermore, among the categories corresponding to perceived

usefulness and perceived ease-of-use, except for Ej, significant
differences were observed among the cluster groups in all
categories (Us: P=.01; IS: P<.01; E: P<.01; Ut: P=.01). The
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proportion of low respondents among the overall survey
participants was 55% in the Ej category. The P values for the
individual group comparisons between the high or low groups
and short-use or medium-use- or long-use cluster groups have
been provided in Table S3 in Multimedia Appendix 1.

Structural Equation Modeling
For this extended TAM, the fit of data was favorable;
comparative fit index: 0.905, Tucker-Lewis index: 0.890, root
mean square error of approximation: 0.052, and standardized
root mean square residual: 0.071. The final structural model
with estimated standardized coefficients is presented in Figure
4, and the estimation results of the hypotheses are shown in
Table S4 in Multimedia Appendix 1.

Figure 4. Results from structural equation modeling show the relevance among TAM (technology acceptance model) variables. Standardized estimates
of the relationships between variables are indicated by solid lines. Significant relationships are denoted by *(P<.05), **(P<.01), and ***(P<.001), while
broken lines represent non-significant relationships. The solid lines represent observed significant relationships, confirming the hypothesized connections.

The path from external variables to (perceived) usefulness was
not statistically significant (β=–0.061, P=.272). However, there
was a significant and positive path from external variables to
perceived ease-of-use (β=0.464, P=.004). While there was a
significant path from motivation to (perceived) usefulness
(β=0.533, P=.003), the paths from motivation to perceived
ease-of-use (β=0.293, P=.401) and behavioral intention
(β=–0.197, P=.201) were not statistically significant. Perceived
ease-of-use significantly influenced (perceived) usefulness
(β=0.387, P<.01). Perceived usefulness, in turn, had a significant
positive effect on attitude (β=.677, P=.02). Furthermore,
(perceived) usefulness had a significant positive effect on
behavioral intention (β=0.612, P<.01). Attitude significantly
influenced behavioral intention (β=0.184, P<.01). Finally,
behavioral intention had a significant positive effect on actual
usage (β=0.618, P<.01).

Discussion

Principal Findings
We analyzed questionnaire responses and app usage log data
of patients with cancer who used a commercial smartphone
health care app as an intervention in a prospective RCT,
stratified users by whether they used the app faithfully or not,
and identified factors affecting app usage. When we grouped
patients using app usage logs, we considered not only total usage
duration but also amount and access frequency, and the group
(S) who used the app the least actively showed a maximum
usage duration close to 12 weeks, the original RCT intervention
period. Because the researchers did not discourage or encourage
use after the 12-week intervention period, the above results
suggest that the study setting had a meaningful effect on the
continuation of app usage among the study subjects. Though

we classified patients into 3 groups, “short use, medium use,
and long use,” this is meaningful because the groups do not
simply refer to the length of the maximum usage period but also
to whether they used the app actively and loyally (Table S2 in
Multimedia Appendix 1).

The analysis of the study population revealed notable differences
among participants grouped by the duration of health
intervention app usage. Gender distribution was significantly
different across groups, where females may be more inclined
to engage in prolonged use of health-related apps, potentially
reflecting greater health-seeking behavior or adherence to digital
interventions among women [45]. Residence patterns showed
that participants from big cities were more likely to be in the
long group, possibly due to better access to digital resources or
a higher level of digital literacy in urban areas. App usage
patterns varied considerably, with Noom being most popular
in the long-duration group, while Walkon and Second Doctor
were more common among those with medium-duration usage.
This variation in app preference may be related to the specific
features, usability, or perceived effectiveness of the apps,
influencing users' commitment over time. Cancer type
distribution also differed significantly, with patients with breast
cancer more likely to be in the long-duration group [46].

In the category with TAM variables, significant differences
among the cluster groups were observed in categories related
to perceived usefulness and perceived ease of use, except for
Ej. SEM results revealed that external variables significantly
influenced perceived ease of use but not perceived usefulness.
Motivation significantly influenced perceived usefulness but
did not significantly affect perceived ease of use or behavioral
intention. Perceived ease of use significantly influenced
perceived usefulness, which in turn significantly affected attitude
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and behavioral intention. Attitude significantly influenced
behavioral intention, which then had a significant positive effect
on actual usage.

Interpretation Within the Context of Wider Literature
Despite continuing skepticism about commercial smartphone
applications' effectiveness for HM, there is no doubt that
smartphone apps have the potential to drive improved health
through behavioral change by always being beside users [47].
Through this mixed methods study, we determined that the
factors influencing the consistent use of apps are not solely
dependent on user characteristics, such as age, gender, and
typical smartphone usage experience [48]. A physician's
recommendation, validated by an assessment tool and model,
can exert a notable influence as external motivation. Also, daily
smartphone use, although unmodifiable, aids in detecting
non-compliance within high-risk groups using digital health
tools [49]. Perceptions of ease-of-use and usefulness
significantly influence app usage, highlighting the crucial role
of UI design and app content in digital HM. The study
emphasizes the importance of doctors understanding digital
health apps for making effective recommendations. Proficiency
in smartphone use correlates with high perceived ease-of-use,
consistent with structural equation results. Further research is
needed to determine if familiarity with smartphone interaction
increases positive responses to notifications or messages.

Participant demographics such as age, gender, residence,
education, and income did not significantly correlate with app
usage experience. However, being female, below the median
age, and having an income exceeding US $4600 were key
characteristics of participants inclined to use apps, aligning with
studies on app retention [50]. While smartphone ownership has
reduced digital inequality, our findings suggest that factors
associated with complex UI vulnerability still influence app
usage.

Distinct differences were observed among the 3 groups
regarding usage duration across all 3 criteria. Analyzing TAM
factors in these groups revealed notable differences in IS and
Eq. Us, Ut, AU, and HI also varied among the groups. Notably,
IS and Eq exhibited the most significant differences, with higher
percentages linked to increased app usage. This indicates that
low Us stemmed from the challenging user experience while
using the app. Previous studies have also indicated that a
user-friendly interface offering simplicity and automation
encourages the use of health care apps, particularly among older
patients [51-54]. Our findings align with these studies, as
patients who reported enjoying the app’s interactions and
user-friendly interface were more prevalent in the group with
higher app usage.

Overall, the significant connections positively affected the other
variables. Except for the connections from external variables
to (perceived) usefulness, motivation to perceived ease-of-use,
and motivation to behavioral intention, the remaining
connections from the improved TAM exhibited the following
significant and positive paths: external variables to perceived
ease-of-use, motivation to (perceived) usefulness, perceived
ease-of-use to (perceived) usefulness, (perceived) usefulness to
attitude, attitude to behavioral intention, and behavioral intention

to actual usage. The presented findings align with existing
research on mobile services and portable electronic devices.
Kuo and Yen [55] investigated 3rd generation mobile
value-added services and found a positive and significant
relationship between perceived usefulness, behavioral intention,
and attitude. Similarly, Chen and Chen [56] demonstrated a
significant link between perceived ease-of-use and attitude
among travelers using global positioning system devices.

We can better understand how different aspects correlate with
the app's actual usage by closely examining the extended TAM
at a more granular level. In terms of demographic data, the
extended TAM revealed that female patients exhibited higher
levels of app engagement compared to males. Furthermore,
younger patients displayed more frequent and proficient app
usage. This trend aligns with previous research findings, which
have consistently highlighted the greater comfort and familiarity
that female and younger individuals have with mobile apps,
leading to prolonged usage [57,58]. This might be attributed to
the fact that women tend to use more health apps related to
fertility and pregnancy, indicating their openness to other health
care apps as well [58]. Additionally, patients with higher
education and income levels exhibited elevated app usage rates.
Furthermore, individuals who reported more extensive
smartphone usage in their current or previous professional roles
were more inclined to use the app extensively. This association
can be attributed to the increased comfort and familiarity that
smartphone-familiar individuals have with mobile technology.
Such users are more predisposed to engage with the app, as they
already integrate smartphones more prominently into their daily
routines than those without a history of smartphone use in their
professional roles.

Digital interventions for clinical research are primarily designed
for research purposes, with acknowledged limitations when
using commercialized smartphone apps [59]. While some digital
therapeutics and HM apps demonstrate effects proven through
clinical studies, there is a lack of consistent indicators for app
use compliance, even in research apps. Results may differ
between clinical studies and real-world scenarios, as participants
in clinical studies might not actively choose their application.
Recognizing patients more as consumers, clinician
recommendations play a crucial role in app retention, boosting
confidence and adherence [60]. This underscores the potential
of clinician recommendations to enhance adherence to digital
health solutions.

Compared to other chronic diseases, the relationship between
the patient with cancer and oncologist (surgical oncologist) is
especially important in the dynamic treatment process and
decision-making [61,62]. Previous research has attempted to
define the patient with cancer–physician relationship in various
ways [63]. Palmer Kelly et al [64] explained the patient with
cancer–physician relationship with attachment model, and an
appropriate attachment relationship between patients with cancer
and physicians is associated with a better quality of life. Our
findings support the idea that the patient-physician relationship
can influence app acceptance and serve as a potential factor for
increasing compliance with digital interventions. Physical
activity is encouraged to cope with anxiety and depression in
patients with cancer, and outdoor physical activity in patients

J Med Internet Res 2024 | vol. 26 | e55176 | p. 9https://www.jmir.org/2024/1/e55176
(page number not for citation purposes)

Park et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


with cancer can be promoted by organized activities [65,66].
Therefore, we can expect that if the use of digital interventions
is encouraged by his or her oncologist (surgical oncologist), the
effect on the quality of life of patients could be further improved.

Strengths and Limitations
To our knowledge, this is the first study that integrated user
experience evaluation in commercial health care apps for cancer
survivors, examining their adherence through usage log data
analysis. Moreover, this is the first study to use SEM to extend
the TAM to be well suited in a mobile health context. The
integration of these 2 approaches enables a comprehensive
understanding of the factors influencing the CU intention of
digital health care applications among patients with cancer,
including the effects of health status and demographics. Our
study provides insights into the key determinants of mobile
health care app usage among patients with cancer, emphasizing
the role of user experience, clinician recommendations, and the
potential to bridge digital health care inequalities.

The traditional TAM faces limitations in capturing recent
technological environment changes and fails to reflect the
diverse information acquisition paths for consumers [67,68].
The classical TAM is criticized for not accounting for users'
voluntary choice of technology, particularly in the context of
HM apps where users may not opt for the technology voluntarily
[69]. In addition, since this study targeted only those who could

use a smartphone, it was difficult to determine how
noncompliance with digital intervention is related to digital
inequality [70]. All the participants in this study were from
Korea, which could limit its generalizability. However, despite
the homogeneity of race and culture in Korea compared to
countries such as the United States, the characteristics of the
patients would not pose a significant generalizability problem.
The age of breast cancer onset varies by ethnicity, with Asian
women having a younger age of breast cancer onset. In addition,
breast cancer has a different peak onset age than colon and lung
cancer, which may bias the results of this study [71,72].
However, this difference is not substantial enough to affect the
study's overall applicability.

Conclusions
This study highlights the critical factors influencing cancer
survivors' adherence to commercial health care apps,
emphasizing the pivotal role of external motivation, particularly
physician recommendations. Key determinants include perceived
ease-of-use and usefulness, highlighting the significance of
effective UI design. SEM reveals positive paths from motivation
to perceived usefulness and from perceived usefulness to attitude
and behavioral intention, impacting actual app usage. These
findings stress the importance of positive user experience and
clinician recommendations in facilitating the effective usage of
digital health care tools among cancer survivors and contributing
to the evolving landscape of medical care.
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Abbreviations
AU: attitude toward usefulness
AW: active willingness to use the app
CU: continuous use
D: demographics
Ej: enjoyment
Eq: equity
HI: human interaction
HM: health management
IM: information management
IS: interface satisfaction
M: motivation
PF: preference of app feature
RCT: randomized controlled trial
SEM: structural equation modeling
TAM: technology acceptance model
UI: user interface
Us: usability
Ut: utility
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