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Abstract

Background: The development of wearable solutions for tracking upper limb motion has gained research interest over the past
decade. This paper provides a systematic review of related research on the type, feasibility, signal processing techniques, and
feedback of wearable systems for tracking upper limb motion, mostly in rehabilitation applications, to understand and monitor
human movement.

Objective: The aim of this article is to investigate how wearables are used to capture upper limb functions, especially related
to clinical and rehabilitation applications.

Methods: A systematic literature search identified 27 relevant studies published in English from 2011 to 2023, across 4 databases:
ACM Digital Library, IEEE Xplore, PubMed, and ScienceDirect. We included papers focusing on motion or posture tracking
for the upper limbs, wearable devices, feedback given to end users, and systems having clinical or rehabilitation purposes. We
excluded papers focusing on exoskeletons, robotics, prosthetics, orthoses, or activity recognition systems; reviews; and books.

Results: The results from this research focus on wearable devices that are designed to monitor upper limb movement. More
specifically, studies were divided into 2 distinct categories: clinical motion tracking (15/27, 56%) and rehabilitation (12/27, 44%),
involving healthy individuals and patients, with a total of 439 participants. Among the 27 studies, the majority (19/27) used
inertial measurement units to track upper limb movement or smart textiles embedded with sensors. These devices were attached
to the body with straps (mostly Velcro), providing flexibility and stability. The developed wearable devices positively influenced
user motivation through the provided feedback, with visual feedback being the most common owing to the high level of
independence provided. Moreover, a variety of signal processing techniques, such as Kalman and Butterworth filters, were applied
to ensure data accuracy. However, limitations persist and include sensor positioning, calibration, and battery life, as well as a
lack of clinical data on the effectiveness of these systems. The sampling rate of the data collection ranged from 50 Hz to 2000
Hz, which notably affected data quality and battery life. In addition, several findings were inconclusive, and thus, further future
research is needed to understand and improve upper limb posture to develop progressive wearable systems.

Conclusions: This paper offers a comprehensive overview of wearable monitoring systems, with a focus on upper limb motion
tracking and rehabilitation. It emphasizes the various types of available solutions; their efficacy, wearability, and feasibility; and
proposed processing techniques. Finally, it presents robust findings regarding feedback accuracy derived from experiments and
outlines potential future research directions.
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Introduction

Two out of the three leading conditions driving the need for
rehabilitation are musculoskeletal and neurological disorders,
with 1.71 billion and 255 million people, respectively, being
affected globally. Musculoskeletal disorders have a significant
impact on both individuals and society as a whole and incur a
substantial economic cost. Thus, their effective and timely
treatment through traditional rehabilitation approaches or digital
health interventions is very important [1]. Carpal tunnel
syndrome, rotator cuff tendonitis, and trigger finger are among
the most common upper limb musculoskeletal dysfunctions that
require methodical rehabilitation treatment [2]. People
experiencing such disorders are often exposed to physical
activities that require repetitive work [3].

Neurological diseases, on the other hand, not only affect the
physical movement of patients but also influence their
independence, living conditions, and quality of life. Usually,
these disorders induce upper limb impairments, which often
require conventional interventions to recover, such as physical
or occupational therapy [4], as their rehabilitation depends on
the duration, intensity, onset, and task orientation [5]. Stroke is
the leading neurological disorder [6] and can potentially require
long-term rehabilitation, with the affected person sometimes
never achieving full recovery [7]. The high prevalence of stroke
and the unique challenges it introduces have led to many studies
about how technology can be used to assist affected populations
and how to meet their needs [8].

Over the last 2 decades, technological devices have been
included in rehabilitation programs within hospitals and
treatment centers, which provide assistance and quantitative
analysis during the rehabilitation process. Wearable devices
have seen rapid development recently, with new technologies
emerging constantly. The sensors used with wearables are
getting smaller, more portable, and more energy efficient while,
at the same time, having improved accuracy [9]. The prevention
and rehabilitation of upper limb disorders are major problems
that can benefit from the use of advanced wearable recovery
systems. However, their integration and adoption in clinical
practice are limited, and further actions are required toward this
goal [6,10].

Therefore, efforts should be focused on developing systems that
ensure that researchers can get reliable data for clinical
evaluations. In this way, the variations in therapy and functional
recovery can be better understood, aiming for the development
of intervention strategies and the comprehension of the
neuromuscular system [6]. Wearable devices are developed to
solve these problems by providing affordable home-based
solutions. It has been argued that inertial measurement units
(IMUs) and surface electromyography (EMG) sensors are among
the best options from the wide range of sensors currently
available on the market that are used for the collection of data

from wearable devices. These sensors offer a good balance
between unobtrusiveness, robustness, and data quality [7].

This paper aims to provide a thorough review of how
wearable-based monitoring systems are used for upper limb
motion tracking and rehabilitation. More specifically, we aim
to provide new insights into this area and analyze them in the
following aspects: (1) assess the type and effectiveness of each
wearable system; (2) assess the wearability and feasibility of
the sensing technology; (3) clarify the signal processing
techniques and extracted features; (4) classify the type and
accuracy of the feedback according to the experiment results;
and (5) review the findings, discuss limitations, and propose
future directions.

Methods

Review Phases
The review was conducted based on the Bargas-Avila and
Hornbæk approach [11] and Cochrane methodology [12], and
it included 5 phases.

Phase 1: Potentially Relevant Publications Identified

Electronic Libraries

We searched 4 electronic libraries, which cover a balanced range
of disciplines, including computer science and engineering,
medical research, and multidisciplinary sources. The following
libraries were included in the review: (1) ACM Digital Library,
(2) IEEE Xplore, (3) PubMed, and (4) ScienceDirect. We
restricted the search to a timeframe of 13 years (2011 to 2023).

Search Terms

The following queries were used: (1) “upper limb rehabilitation”
AND “wearables,” and (2) (“posture monitoring” OR “motion
monitoring”) AND “wearables.”

Search Procedure

The search terms were applied to the publication’s title, abstract,
and keywords.

Inclusion Criteria

The inclusion criteria were as follows: (1) the paper concerns
motion or posture tracking of the upper limbs, (2) the study
focuses on wearable devices, (3) feedback is given to the end
users, (4) the system considers clinical or rehabilitation
purposes, and (5) the paper has been published in the last 13
years and is written in English.

Exclusion Criteria

The exclusion criteria were as follows: (1) robotic and
exoskeleton systems, (2) prosthetics and orthoses, (3) activity
recognition systems (activity/gesture or motion capture), and
(4) reviews and books.
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Search Results The total number of search results from phase 1 was 1564
papers. More detailed results are presented in Table 1.

Table 1. Search results per library.

Library (N=1564), nQuery

TotalSDdPMcIEEEbACMa

87078309145338Query 1e

6943006799228Query 2f

aACM: ACM Digital Library.
bIEEE: IEEE Xplore.
cPM: PubMed.
dSD: ScienceDirect.
eQuery 1: “upper limb rehabilitation” AND “wearables.”
fQuery 2: (“posture monitoring” OR “motion monitoring”) AND “wearables.”

Phase 2: Publications Retrieved for Detailed Evaluation

First Exclusion

All 1564 search results from phase 1 were imported into the
software “Paperpile.” Duplicate entities were excluded
manually. Overall, 96 duplicate publications were removed,
and 1468 papers remained.

Second Exclusion

Publications with incomplete or restricted entries, those with
no available full text, and those considered irrelevant based on
the abstract were excluded manually. As a result, 1110 papers
were removed.

Third Exclusion

We narrowed the entries to original full papers written in
English. Part of this third exclusion was to remove entities that
were not original full papers, such as workshops, posters,
speeches, reviews, magazine articles, and generally grey
literature without formal peer review. As a result, 51 papers
were excluded. The remaining 307 papers included 255 journal
articles, 45 conference papers, and 7 book chapters. 

Phase 3: Publications to be Included in the Analysis

Final Exclusion

The focus of this review is on tracking upper limb motion via
wearable solutions. Consequently, this final exclusion phase
excluded studies that were not relevant based on a full-text
review. Based on the exclusion criteria, we removed 280
irrelevant publications (eg, exoskeleton, robotics, and orthosis),
and finally, 27 papers were selected for analysis.

Phase 4: Data Gathering

The screening process and data extraction were performed
independently by 3 researchers (EK, MM, and PP).
Discrepancies between reviewers were resolved through regular
meetings and detailed discussions, addressing all the
disagreements to minimize bias. In this phase, relevant
information was extracted from the selected papers to conduct
the analysis. From each study, the following information was

extracted: target population, sample size of participants, sensor
placement, type of the wearable system, type and feasibility of
wearability, data sampling rate, energy consumption/battery
characteristics, type and accuracy of feedback according to
statistical analysis results, methodology, measurement
techniques, instruments, key findings, limitations, and future
directions.

Phase 5: Data Analysis 

The data collected in phase 4 were analyzed using descriptive
statistics. We then reviewed the literature to support and enhance
the additional knowledge that this paper provides. Thematic
analysis was used as an extra methodology to categorize our
findings based on themes: (1) type and effectiveness of wearable
systems, (2) wearability of sensing technology, (3) data
processing and measurement techniques, and (4) type and
accuracy of feedback.

Results

Study Characteristics
The review identified 27 studies (Figure 1). All the reviewed
studies tracked upper limb motion using wearable devices and
were divided into 2 main categories according to the purpose
of the study: (1) clinical motion tracking and (2) rehabilitation.
Some studies examined both applications. More specifically,
the majority of papers that were selected (15/27, 56%) [13-27]
focused on wearable devices that monitor human movement,
and data were collected to be employed for general use in a
clinical setting. The remaining papers (12/27, 44%) [28-39]
emphasized systems for upper limb rehabilitation. The PRISMA
(Preferred Reporting Items for Systematic Reviews and
Meta-Analyses) checklist is provided in Multimedia Appendix
1.

The key features of the studies are summarized and compared
in Table 2, according to the purpose of the study, the type and
number of sensors used, the placement location of the sensors,
the placement method for the sensors, and the measurement
method, with division into the 2 aforementioned categories.
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Figure 1. Identification and selection flow diagram.
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Table 2. Key features of the studies.

Measurement/methodologyPlacement
method

Placement loca-
tion

Technology (number
of sensors)

PurposeContent and study

Motion tracking

ROMa: Bobath’s handshake
and shoulder touch

StrapsForearm, upper
arm

Accelerometer (n=2)Monitor upper limb motion func-
tion of stroke patients

Yu et al [27]

Compensatory movement of
the shoulder girdle

Zipped vest, Vel-
cro straps

Shoulder, torso9-DOFb IMUc (n=2)Monitor compensatory movements
and evaluate their applicability in
a clinical setting

Wang et al [24]

Movements of major upper
limb joints: shoulder, elbow,
wrist, and finger joints

Wristband, arm-
band

Wrist, forearm,
upper arm

6-DOF IMU (n=2),

EMGd (n=10)

Evaluate upper limb motor func-
tion in hemiplegic patients

Li et al [18]

Movement quantified: hand
smoothness, trajectory, trunk

Wristband, arm-
band, straps

Hand, wrist,
forearm, upper
arm, sternum

9-DOF IMU (n=7),
EMG (n=2)

Quantify upper limb movement
for muscle activity analysis in
stroke patients

Repnik et al
[20]

stability, and muscle activity

Opening-closing cycles
(hand), muscle tension of

Reusable adhe-
sive layer

Hand, wrist,
forearm, upper
arm (biceps, tri-
ceps)

Piezoresistive strain
sensor (n=1)

General motion trackingTolvanen et al
[23]

the flexor sternum, biceps,
upper arm, bicep curl, peck
fly, and triceps

ROM: instant tensing, bend-
ing, static motions of fin-

Direct windingUpper arm, fin-
gers

GYSe sensorMonitor different body move-
ments, muscle contraction, and re-
laxation

Bai et al [13]

gers, varied contractions of
the bicep

ROM: finger bending/extend-
ing and hand gestures

Water-borne adhe-
sive

Hand, fingersHydrogel-elastomer
hybrid ionic sensor
(n=10)

Identify hand motions, joint bend-
ing, hand posture, gesture, and
sign language

Gu et al [15]

General quantification of the
amount of use of upper limb
function

Rings, wristbandsWrists, fingersAccelerometer (n=4)Analyze data from neurologically
intact individuals and the free-liv-
ing environment, and develop a
system to monitor stroke survivors

Lee et al [17]

ROM: finger wrist and el-
bow bending; responses to
breathing

Velcro strapsUpper arm,
forearm, wrist,
fingers

Strain sensor (n=1)Monitor human movement with
the use of a flexible resistance
strain sensor with a porous struc-
ture

Zhang P et al
[26]

ROM: finger movement (in-
dex finger, thumb flexion/ex-

Clip-on strapsWrist, hand,
fingers

9-DOF IMU (n=7)Facilitate the clinically fitted mea-
surement of fine-motor finger and
wrist joint movements. Character-

Lee et al [16]

tension) and wrist move-
ment (ulnar/radial flexion)ize age-related changes in hand

functions

Trunk velocity, relative limb
velocity, and absolute limb
velocity

StrapsWristMicrothermal flow
sensor (n=2)

Implement 3D motion velocity
measurement, and propose a func-
tional link artificial neural network
model (FLANN)

Zhang J et al
[25]

ROM: shoulder, elbow,
thumb, index flexion/exten-

Medical tape/3D-
printed flexible
straps

Sternum, shoul-
der, upper arm,
forearm, hand,
fingers, thumb

6-DOF IMU (n=8)Evaluate spatiotemporal kinematic
metrics for the assessment of upper
limb movements after stroke

Schwarz et al
[21]

sion, and wrist supina-
tion/pronation

Shoulder twist angle (range),
abduction, flexion, elbow

3D-printed hous-
ing cases at-

Sternum, upper
arm, wrist, fore-
arm

9-DOF IMU (n=3),

MMGf (n=2)

Develop a comprehensive system
designed for the clinical environ-
ment, and quantify hand/wrist
movement

Formstone et al
[14]

twist angle, wrist flexion,
and circumduction muscle
activity

tached with 3D-
printed flexible
resin straps

Muscle activity, elbow flex-
ion angle, and custom-made
changes in muscle volume

Straps, direct
winding

Forearm, upper
arm, torso

9-DOF IMU (n=3),
EMG (n=4), stretch
sensor (n=1)

Analyze kinematic and physiolog-
ical features for predicting elbow
motion intention

Little et al [19]
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Measurement/methodologyPlacement
method

Placement loca-
tion

Technology (number
of sensors)

PurposeContent and study

“Hand counts”: finger flex-
ion/extension, wrist flex-
ion/extension, and wrist radi-
al/ulnar deviation movement

Wristband, ringWrist, fingers6-DOF IMU (n=1),
magnetometer (n=4)

Real-time quantification of the ef-
fect of wearable feedback on hand
counts for increasing hand activity

Schwerz de Lu-
cena et al [22]

Rehabilitation

Body segment posture;
forearm and upper arm orien-
tation; trajectory of upper
arm’s yaw, pitch, and roll;
elbow angle; and forearm
roll

Velcro strapsForearm, upper
arm

9-DOF IMU (n=2)Measure orientation and correct
arm posture using vibrotactile ac-
tuators for stroke rehabilitation
patients and therapists

Ding et al [39]

ROM: position and orienta-
tion of the wrist and elbow
joints. Accuracy of motion
estimation and motion
matching

Velcro strapsWrist, upper
arm

6-DOF IMU (n=2)Wearable upper limb motion
tracking method for stroke rehabil-
itation therapy at home

Kim et al [31]

ROM: elbow joint angleVelcro strapsForearm, upper
arm, sternum

6-DOF IMU (n=3)Develop and evaluate the feasibil-
ity of a wearable sensor-based
motion-tracking system

Moham-
madzadeh et al
[34]

ROM of each degree of
freedom

Velcro straps,
medical tape

Shoulder, upper
arm, wrist

9-DOF IMU (n=3)Patient monitoring system to sup-
port occupational therapists in up-
per limb rehabilitation work with
stroke patients

Ploderer et al
[35]

Analytical shoulder flexion,
and analytical and functional
elevation in the scapular
plane

Vest with Velcro
straps

Scapula (shoul-
der blade), torso

9-DOF IMU (n=3)Evaluate garments equipped with
sensors that support posture moni-
toring; used in upper extremity re-
habilitation training of stroke pa-
tients

Wang et al [28]

ROM: combined abduction
and flexion motion

Skin-friendly
tape

Hand, fingers,
forearm

9-DOF IMU (n=16)Part of a feedback-controlled hand
neuroprosthesis for the rehabilita-
tion of patients who experience
motor impairment of the hand

Salchow-Höm-
men et al [37]

Perform exercise without
moving the shoulders; detect
movement or no movement
of the shoulders

Commercial elas-
tane-based fitness
shirt

ScapulaStrain sensors (n=2)Evaluate the impact of the Double
Aid (DAid) smart shirt; training
process of patients with subacromi-
al pain syndrome

Semjonova et al
[38]

Accuracy of monitoring fin-
ger motion, wrist flexion/ex-
tension, and wrist ulnar/radi-
al deviation. Accuracy in
estimating different levels
of movement activity

Watch-like enclo-
sure, small
neodymium ring
worn on the in-
dex finger

Wrist, fingersTriaxial magnetome-
ter (n=2), accelerome-
ter (n=1)

Nonobtrusive option for monitor-
ing wrist and hand movement;
needed for stroke rehabilitation
and other applications

Friedman et al
[29]

Static accuracy (ROM: flex-
ion/extension, dynamic
range, and repeatability)

Double-sided ad-
hesive
tape/mounted on
polyamide/elas-
tane-fabricated
glove

Hand, fingers,
thumb

6-DOF IMU (n=15),
9-DOF IMU (n=6)

Ambulatory system using inertial
sensors for hand kinematics, and
evaluation of hand functioning

Kortier et al
[32]

ROM; circumduction mo-
tion

Flexible fabric
straps partially
made of Lycra
sewed on a glove
structure

Thumb, handBending sensor (n=2)Identify optimal sensor locationsKim et al [30]

ROM: elbow flexion by
various degrees; repeat mo-
tion at 3 levels of speed.
Repeat each motion and
perform free-form motions

FabricForearmStrain sensor (n=2)Primary use of conductive stretch-
able fabrics to sense skin deforma-
tion during joint motion and infer
the joint rotational angle

Liu et al [33]
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Measurement/methodologyPlacement
method

Placement loca-
tion

Technology (number
of sensors)

PurposeContent and study

Detect the total muscle activ-
ity of the forearm circumfer-
ence

ArmbandForearm9-DOF IMU (n=1),
EMG (n=1)

Define the clinical features of
stroke patients while performing
hand movements for rehabilitation
training

Pregnolato et al
[36]

aROM: range of motion.
bDOF: degrees of freedom.
cIMU: inertial measurement unit.
dEMG: electromyography.
eGYS: graphene thin-film yarn sensor.
fMMG: mechanomyography.

Study Type and Effectiveness
As mentioned above, wearable devices are used to capture upper
limb function for general health purposes to obtain information
and data about physiological parameters to assist rehabilitation
patients and therapists. The experiments in most of the studies
(22/27) [13-19,21,22,24-26,28,29,31-37,39] were noncontrolled
experiments, where participants were either healthy able-bodied
individuals or patients who experienced upper limb disorder,
and they were recruited for participation in the experimental
evaluation. In some studies (4/27) [20,27,30,38], the experiments
were controlled, where both patients and healthy participants
were included and the results were compared statistically. The
number of participants was not specified in 1 study [23].

The findings revealed that most of the studies (22/27)
[13-19,23-29,31,32,34-39] had a positive outcome. In 2 cases

[22,30], further studies need to be conducted. In the first study,
the maximum estimated error exceeded the required accuracy
for a typical clinical assessment (over 5 degrees). In the second
study, the hand feedback for stroke patients was briefly
modifiable, indicating no therapeutic benefit over a short period.
Thus, these studies are considered neutral. The outcomes of the
remaining 3 studies [20,21,33] were negative as they do not
offer any major findings [20] on motion tracking and the
application is difficult to implement [21,33] due to limitations
such as the system’s measurement accuracy and large errors.

From the above information, it can be concluded that
motion-tracking wearable devices have an overall positive
impact on the interpretation of the data, and they provide useful
assessments that can be used in future systems for clinical and
rehabilitation purposes. The aforementioned data are presented
in Table 3, categorized according to the purpose of the study.
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Table 3. Study type and target population.

Target populationStudy typeContent and study

Motion tracking

23 stroke patients, 4 physiciansControlledYu et al [27]

8 musculoskeletal shoulder pain patientsNoncontrolledWang et al [24]

16 healthy adultsNoncontrolledLi et al [18]

28 stroke patients, 14 healthy adultsControlledRepnik et al [20]

Not specifiedNot specifiedTolvanen et al [23]

1 healthy adultNoncontrolledBai et al [13]

1 healthy adultNoncontrolledGu et al [15]

35 healthy adultsNoncontrolledLee et al [17]

1 healthy adultNoncontrolledZhang P et al [26]

34 healthy adultsNoncontrolledLee et al [16]

1 healthy adultNoncontrolledZhang J et al [25]

9 stroke patientsNoncontrolledSchwarz et al [21]

3 healthy adultsNoncontrolledFormstone et al [14]

3 healthy adultsNoncontrolledLittle et al [19]

20 chronic stroke patientsNoncontrolledSchwerz de Lucena et al [22]

Rehabilitation

5 healthy adultsNoncontrolledDing et al [39]

4 healthy adultsNoncontrolledKim et al [31]

8 healthy adultsNoncontrolledMohammadzadeh et al [34]

1st study: 8 occupational therapists; 2nd study: 1 healthy par-
ticipant; 3rd study: 2 occupational therapists

NoncontrolledPloderer et al [35]

4 healthy adultsNoncontrolledSalchow-Hömmen et al [37]

17 primary subacromial pain syndrome patients and 17 healthy
adults

ControlledSemjonova et al [38]

17 stroke patientsNoncontrolledWang et al [28]

7 healthy adultsNoncontrolledFriedman et al [29]

1st study: 1 participant; 2nd study: 1 participant; 3rd study: 5
participants

NoncontrolledKortier et al [32]

10 participants for the optimal sensor location and 4 partici-
pants for experimental evaluation

NoncontrolledKim et al [30]

10 healthy adultsNoncontrolledLiu et al [33]

117 stroke adultsNoncontrolledPregnolato et al [36]

Wearability and Feasibility of Sensing Technologies

Categorization of Wearable Sensors
Capturing the motion of the upper limbs through sensor
technologies has been essential for the development of
interactive wearable devices for rehabilitation and clinical setting
purposes. From the reviewed papers, 4 main categories of
sensing technologies were identified: (1) inertial-based sensors
(accelerometer, magnetometer, and IMU); (2) bending, force,

and strain sensors (bending/stretch sensor and strain sensor
[piezoresistive strain sensor and hydrogel-elastomer ionic
sensor]); (3) myography sensors (EMG and mechanomyography
[MMG]); and (4) other sensors (graphene thin-film yarn sensor
[GYS] and microthermal flow sensor).

Figure 2 provides an overview of the number of sensing
technologies that were used in the studies, according to the type
of sensor.
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Figure 2. Categorization of sensing technology. DOF: degrees of freedom; EMG: electromyography; GYS: graphene thin-film yarn sensor; IMU:
inertial measurement unit; MMG: mechanomyography.

As Figure 2 shows, inertial sensors are the most common type
of sensor used for data acquisition (19/27)
[14,16-22,24,27-29,31,32,34-37,39]. An inertial sensor is an
electronic device that measures the force and the angular rate
of a body, which can be achieved by a combination of 3
embedded sensors: accelerometer, gyroscope, and
magnetometer. It can also be used to calculate the orientation
of the body. The accelerometer measures the proper acceleration,
the gyroscope is used for measuring orientation and angular
velocity, and finally, the magnetometer measures the strength
and sometimes the direction of the magnetic field. Of the 19
studies, 14 [16,17,21,24,27-29,31,32,34,35,37-39] used a
combination of the 3 sensors to measure upper limb posture.
More specifically, in 6 studies [16,24,28,35,37,39], 9 degrees
of freedom (DOF) inertial sensors were used, including a 3-axis
accelerometer, a 3-axis gyroscope, and a 3-axis magnetometer.
In 3 studies [21,31,34], the magnetometer was excluded from
the data fusion, and 6-DOF inertial sensors were proposed. Two
of the studies [17,27] used only accelerometers as their sensing
technology, while in 1 study [29], only a magnetometer was
included. Moreover, a combination of 6-DOF and 9-DOF IMUs
was used [32] to measure finger movement for the assessment
of hand kinematics while using inertial sensors. Another way
to capture wrist and finger motion was introduced by Schwerz
de Lucena et al [22], where magnetometers were placed on the
wrist to capture the magnetic field changes of the index finger,
and the orientation of the wrist was quantified by a 6-DOF IMU.
Furthermore, Pregnolato et al [36] used a combination of a
9-DOF IMU with EMG. Only the gyroscope of the inertial
sensor was used to place the device on the patient’s forearm,
and EMG was used to detect the overall muscle activity in the

circumference. The remaining 4 studies [14,18-20], proposed
a fusion of inertial sensors with EMG or MMG [14,18,20] and
a stretch sensor [19] to measure myographic data and changes
in muscle volume, respectively.

In addition, the use of bending sensors and strain sensors was
proposed in 2 papers [30,38]. This type of sensor was introduced
owing to the limited available information on the actual impact
of smart garments on clinical outcomes in physiotherapy [38]
and the inaccurate measurement of thumb carpometacarpal joint
movements [30]. Semjonova et al [38] proposed a purely
textile-based smart shirt for the training process of patients with
subacromial pain syndrome, while another study [30] presented
a novel approach to identify optimal sensor locations to properly
measure carpometacarpal joint configurations. Low-cost
everyday fabrics were also introduced [33], which consist of
stretchable conductive fabrics as strain sensors to sense skin
deformations during elbow joint motion and infer the joint
rotation angle. Furthermore, 1 study [23] proposed strain sensors
along with a highly functional piezoresistive strain sensor, which
was designed and fabricated exclusively because it provides
excellent durability in human motion monitoring. Strain [26]
and hydrogel-elastomer ionic [15] sensors are also used as they
provide flexibility when they are worn, allowing the precise
monitoring of upper limb movement and respiratory changes.

An alternative approach was also provided [13,25] as
microthermal flow sensors and GYSs were introduced. The
former method calculates velocity without integral calculation,
and thus, accumulated errors are excluded. In the latter, the
degree of resistance recovery and the gauge sensitivity can be
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well controlled and modulated, providing high evaluability for
developing next-generation wearable electronics.

The placement of each sensor can vary greatly, including the
core of the body, across the arm, and on the fingers, according

to the intended application. Table 4 provides information about
the number and placement of sensors, and Figure 3 graphically
shows their distribution for the studies examined in this paper.

Table 4. Studies that used sensors in each upper limb location.

Number of studiesStudiesLocation

2[21,28]Scapula

3[19,24,28]Torso

4[14,20,21,34]Sternum

3[21,24,35]Shoulder

13[13,14,18-21,23,26,27,31,34,35,39]Upper arm

13[14,18-21,23,27,33,34,36,37,39]Forearm

12[14,16-18,20,22,23,25,26,29,31,35]Wrist

8[15,16,20,21,23,30,32,37]Hand

3[28,30,32]Thumb

Figure 3. Infograph of sensor placement. This model summarizes the placement of sensors on the upper body; however, the overall number of sensors
or whether they are placed on the right or left hand has not been considered. DOF: degrees of freedom; EMG: electromyography; GYS: graphene
thin-film yarn sensor; IMU: inertial measurement unit; MMG: mechanomyography.
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Among the 27 studies, 13 [13,14,18-21,23,26,27,31,34,35,39]
involved sensor placement in the upper arm, 12
[14,16-18,20,22,23,25,26,29,31,35] involved placement on the
wrist, and 13 [14,18-21,23,27,33,34,36,37,39] involved
placement on the forearm. Many studies focused on finger
movement monitoring. Sensors were placed on the hand in 8
studies [15,16,20,21,23,30,32,37], on the thumb in 3 studies
[28,30,32], and on the shoulder in 3 studies [21,24,35]. In some
cases, complex body posture and position were monitored.
Sensors were placed at the sternum in 4 papers [14,20,21,34],
at the torso in 3 papers [19,24,28], and at the scapula in 2 papers
[21,28].

Placement Method and Feasibility of Sensors
One of the key factors considered for the development of upper
limb wearable devices is the feasibility and wearability of the
sensors, as in some cases, long-term monitoring is required.
Consequently, the design of each system must be examined
because it can greatly influence the feasibility of the system.
From the reviewed papers, wearable systems can be classified
into 4 categories, according to the attachment method of the
sensors: (1) hook and loop straps (Velcro straps) and fastened
straps; (2) bands; (3) adhesive bonding; and (4) other methods.

With regard to the methods used for placing the sensors, 13 out
of the 27 studies [14,16,19,21,24-28,30,34,35,39] selected hook
and loop straps. More specifically, 4 studies [26,31,34,39] used
only a Velcro strap, which is a fastener that adheres to itself.
Straps are generally a preferred type of placement method as
they can be placed in convenient places on the arm [27] and
they are simple, lightweight, and easy to use [25]. Clip-on straps
have also been developed, which are flexible, and they allow
inertial sensors to be placed on the fingers [16]. Furthermore,
5 studies [19,21,24,28,35] used a combination of hook and loop
straps. Medical tape with 3D-printed flexible straps [21] or
Velcro straps [35] were designed for upper limb assessment and
rehabilitation of stroke patients, respectively. The former
application was characterized by participants as being
“comfortable to wear;” however, 3 of them reported impedance
to grasp because of the finger sensors. In the latter, the design
was a major issue as there is still work in the development of
the sensors and their alignment. Straps along with direct winding
of sensors in the armband [19] were also used as a method of
placement; however, there is no discussion about the feasibility
of the system. Another way to improve the feasibility of
wearability is by designing a vest where different garment parts
are attached with Velcro straps [24]. A zipped vest of soft
material was developed, which makes it easier for patients to
put on and take off. The precision of the sensor is guaranteed
by a predefined position, and it is sewn by coated conductive
yarn on a soft elastic strap with a Velcro strap fastened at the
end. Overall, this system is perceived as highly usable, and the
patients were motivated to train with it. Similarly, a garment
embedded with smart textiles, conductive points, yarns, and
sensors attached with elastic Velcro straps was also introduced
[28]. This system is adjustable and more precise as sensors are
placed in different positions, and it was rated as having high
usability by users because it resembles everyday clothing in
appearance and comfort while accurately tracking posture.
Finally, flexible resin straps were also used [14] for attaching

the housing cases of the sensors; however, the wearability of
the system was not characterized.

Stretchable bands have also been designed [18] as they provide
convenience and comfort around the arm without disturbing the
subject’s movement [20]. Furthermore, for hand and finger
tracking, wristbands and rings were developed [16], and they
were attached to the wrist and finger, respectively; however,
the feasibility of the application was not discussed. For tracking
the forearm, a study [36] used an armband to secure the IMU
position; thus, the surface EMG acquisition remained the same
for all patients. Feasibility was also not examined for this
system.

Another method of attaching sensors to the body is adhesive
bonding [15,23,32,37]. In this case, conductive sensors are
included in the fabric and support wearable technologies. Their
main function is to sense the physical movement of the arm and
then transform it into electrical signals. Assessment of hand
movement is necessary when evaluating hand function, and
many glove-sensing systems lack rotational observability, hand
orientation estimation, and user customization. Sensors can be
mounted on a double-sided adhesive tape [23] as well as on a
polyamide/elastane-fabricated glove [32], which consists of
multiple printed circuit board strings that are attached to each
finger segment. However, the feasibility of the system was not
specified. Skin-friendly tape that attaches individual sensor
strips adhesively to the finger segments and a silicon fixture
that attaches the base unit of the system to the back of the hand
make the system compact and portable. The sensor strips can
be removed and replaced, thus increasing the flexibility in
different therapy settings and different hand sizes, which makes
the system more practical and easier to maintain [37]. A
waterborne adhesive is an alternative method of attaching
sensors to the hands as the system is fully integrated, but the
result is not considered very feasible [15].

Regular elastic fabrics have also been used [33], where a
prototype provided an acceptable comfort level and could be
adapted to target users with different figures. A commercial
elastane-based fitness shirt with elasticity was also used as a
“vest,” where sensors were attached by polychloroprene-based
adhesive [38]. Comfort and elasticity were the key requirements
for the base shirt to conform with the shape of the body of the
user.

From the papers included in this review, only 1 study was
conducted by using direct winding (the only placement method
for attaching sensors to the body) [13]. GYSs were attached by
direct winding on varied portions of the human body for
monitoring different movements such as finger bending and
muscle contraction and relaxation. A new direct-wearing mode,
where the GYS can be directly attached to the skin, was
introduced, which resulted in the improvement of sensing
accuracy. Moreover, flexible fabric straps made of Lycra have
been partially sewn on a glove structure [31] to fix the sensor
in an optimal position. The feasibility and flexibility of this
application are not discussed, and thus, the usability of the
system cannot be concluded. A wearable device for tracking
the daily use of the wrist and a finger was developed by
designing a watch-like enclosure that is worn on the wrist with
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a small neodymium magnetic ring on the index finger [29]. This
design is described as “nonobtrusive” as the ring provides a
reliable wireless signal without a power source, and thus, the
need for bulky wiring or a battery is eliminated. Because of its
design, the “Manumeter” is described as “socially acceptable,”
and it can be worn for long durations. In a more recent study
[22], a newer version of the “Manumeter” was developed, where
a jewelry-like device was fastened to the wrist with a band to
monitor its movement. For finger movement, an ipsilateral
finger ring was placed on the index finger. However, feasibility
was not discussed.

Signal Processing Techniques and Extracted Features
Wearable upper limb devices provide important information
about limb motion through motion analysis. Different signal
processing techniques were used, and features were extracted
to provide feedback to end users or therapists for better data
assessment and interpretation of movement.

Signal processing is essential for such devices to reduce noise
signals, transform data, and extract meaningful motion features.
A variety of filters are used depending on the data provided by
the sensors and the desired output of the system. In 13 studies
[14,16-22,26,29,31,32,35], filters were used to remove noise
from sensor signals. More specifically, the Kalman filter was
used in 2 studies [20,32], which is an algorithm that uses
observed measurements over time to produce estimated
unknown variables that tend to be more accurate by estimating
a joint probability distribution over the variable of each
timeframe.

In 3 studies [18,21,32], the Butterworth filter was used to
minimize low-frequency noise and high-frequency interferences.
Another method to extract data from upper limb devices involves
the infinite impulse response filter (IIR) [14,26]. This filter is
digital with infinite impulse response and can be designed as a
low-pass or high-pass filter. The Madgwick filter is an algorithm
that reduces integration errors by the magnetometer and
accelerometer, and it was used in 1 study [16]. A combination
of 2 of the aforementioned filters was implemented in 1 study
[21]. The accelerometer and gyroscope data were low-pass
filtered using the Butterworth filter and then passed through the
Madgwick filter to integrate the drift of the angular velocity. A
complementary filter was implemented in 1 study [31] to reduce
the integration drift by providing correct data on the orientation
and position of each upper limb segment. More recently,
research has been conducted on machine learning (ML)
techniques to assist with predicting motion and improving
tracking accuracy. For example, the Block Sparse Bayesian
Learning (BSBL) algorithm was used in 1 study to reconstruct
the accelerometer signal from compressed data [27]. Little et
al [19], on the other hand, compared 10 different ML algorithms
to predict angle trajectories through the fusion of physiological
and kinematic features.

Another important feature of wearable devices is the sampling
rates of the sensors, as they determine the quality of the captured
data, providing a better understanding of upper limb motion.
High sampling rates provide more precise data acquisition;
however, battery life is significantly reduced as power
consumption is increased. More specifically, in the revised

studies, the smallest sampling rate was mentioned in the research
conducted by Tolvanen et al [23], where a pressure sensitivity
test for light finger touch by a stretch sensor was performed. In
contrast, the highest sampling rate was at 2000 Hz in a paper
by Pregnolato et al [36], where hand movements of stroke
patients for rehabilitation were captured by a 9-DOF IMU with
a surface EMG sensor. While both studies provide valuable
insights into their respective applications, the battery life was
not mentioned. With regard to the battery life, the shortest
battery duration was observed in a study by Gu et al [15], where
10 hydrogel-elastomer hybrid ionic sensors were used to capture
hand motion, joint bending, hand posture, and gesture. The
battery life in this study was 1-2 hours, with an approximate
sampling rate of 333.33 Hz, attributed to a 3.3-V rechargeable
Li-ion battery. In contrast, the longest battery life was reported
by Friedman et al [29], with a duration of 21.5 hours. Power
was delivered to 2 triaxial magnetometers and 1 accelerometer
to monitor wrist and hand movements, and the sensors were
powered by a 3.7-V 450-mAh lithium polymer battery.

The relationship between battery size and sampling rate is
crucial as it can affect the efficiency of the wearable sensors.
Specifically, in the study conducted by Lee et al [17], a
170-mAh battery (sized 1-2 cm) was used to power an
accelerometer with a sampling rate of 67 Hz, and the battery
life was approximately 6 hours. In contrast, Wang et al [24]
employed a larger 10-cm 3-V battery to power two 9-DOF IMUs
with a sampling rate of 50 Hz. This variety of sampling rates
and data acquisition reflects the diverse design choices between
consumption and device portability in wearable sensor
technology.

Type of Feedback and Accuracy of the System
Feedback is a key feature of the rehabilitation process and
motion tracking as it provides important and meaningful
information to therapists to interpret the performance of the
system. Moreover, it plays an important role in informing
patients of their progress, which leads to better recovery chances.
The majority of studies (23/27) [13-23,25-27,29-35,37,38] used
visual feedback. Three studies provided visual and auditory
information [24,36] and haptic feedback along with visual and
auditory information [24,28], and 1 study [39] provided only
haptic feedback.

More specifically, visual feedback provides therapists and users
with more precise information about their tasks and training
instructions to achieve the desired position through direct visual
analysis of the movement. Haptic feedback is provided by
vibrotactile actuators, and small transducers are designed to
optimize skin response to vibration. The vibrotactile actuators
must have a minimum critical distance for their vibration to be
identifiable, and the subjects of the experiment had to rely
exclusively on it to accurately rehabilitate their posture and
eventually regain their lost muscular abilities. Wearable devices
that used a combination of feedback approaches (visual, audio,
and haptic) provided an objective outcome that contributed to
increasing the effectiveness of training. Moreover, these
approaches provide support to therapists, giving them additional
information about the patients’ motions, and lastly, the quality
of training is improved by detailed feedback signals.
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Accuracy of system measurements is necessary for the
effectiveness of proposed wearable devices as it plays a vital
role in the interpretation of output data and the extraction of
user features. Consequently, feedback should be quick enough
to improve the operator’s performance in terms of reducing
mental effort and informing therapists about movement
characteristics. One of the most common ways to present the
accuracy of the system and evaluate position and velocity based
on a kinematic model is through the calculation of the mean
error between the bending joint angle of the user and the
proposed validated algorithm with good accuracy, which is used
as a reference, under different speeds and magnitudes
[14,16,17,19,22,24,25,27,29-37]. Moreover, a statistical analysis
is conducted by calculating the “root mean square deviation”
(RMSD) or “root mean square error” (RMSE), correlation
coefficient (CC), mean absolute error (MAE), and P value. In
some papers, accuracy was either not measured or the
circumstances under which accuracy was calculated were not
mentioned [13,15,18,20,21,23,26,28,35,38,39].

Discussion

Principal Findings
This paper provides a systematic literature review of upper limb
wearable device technologies that were developed in the past
decade. The screening of papers from 4 different electronic
libraries yielded a total of 27 relevant papers that were included
for analysis. The papers were classified into 2 major categories,
according to the purpose of the study: clinical motion tracking
and rehabilitation. The analysis of the findings suggests that
upper limb motion is most often tracked using inertial sensors
owing to their accuracy, compact size, and effectiveness in
assessing range of motion (ROM). Advanced data processing
techniques, such as Kalman and Madgwick filters, were used
for data fusion, ensuring data accuracy. One of the key elements
of wearable technologies is usability, which can be affected by
how wearables are placed on a user, their form factor, and their
energy consumption. Even though most studies used straps for
placing sensors, the other characteristics have greater variability,
with no clear consensus among the research community.

The papers were categorized according to the type of study
(controlled and uncontrolled). Most of them were uncontrolled
studies, which may lead to bias because of the absence of
randomly selected control groups and a comparison between
them.

The goal of upper limb wearable devices is to provide assistance
to therapists and researchers through either monitoring upper
limb function for clinical assessment or aiding rehabilitation
training and reducing the recovery time [40]. Overall, the
developed wearable devices can positively influence the
motivation of users, while in the case of rehabilitation, patients
can undergo treatment at home by aiming for a high level of
independence [41].

Various sensing technologies were used for tracking upper limb
motion. Inertial sensors tend to be the most used sensors as they
are used to estimate joint angles of the upper limbs. These
technologies provide data accuracy, and because of their size,

they are used to monitor and provide feedback to patients and
therapists on ROM and rehabilitation performance. However,
the placement method needs to be considered owing to its
essential role in the ROM assessment, as the interpretation of
data influences the development of rehabilitation treatment.
Moreover, a flexible and well-fitted design can improve signal
quality and reduce measurement noise [42]. Consequently, the
majority of devices were attached to the body with straps
(mostly Velcro straps), as they provide flexibility and great
strength (eliminating data bias) and require low maintenance.
The hold that Velcro straps provide can be generally
characterized as “firm.” Although this placement method is easy
and noninvasive [39] and there is no need for external cameras,
emitters, or markers [31], the feasibility of the system is not
guaranteed for an extended period [25,39]. Similarly, clip-on
straps can make the system modular in many aspects. This
design can be adopted regardless of hand dimensions and the
presence of deformities or inflammation. These straps are
manufactured by using a stretchable and flexible material that
yields extra comfort and causes minimum disruptions to
movement [16].

The placement of wearable sensors significantly impacts their
performance, user acceptance, and engineering demands. As
sensor technology progresses from wearable to implantable and
ingestible forms, challenges arise across regulatory, technical,
and translational domains. Misplacement or misalignment of
wearable sensors can reduce classifier accuracy; however, some
approaches have maintained precision (97%) and recall (98%)
at high levels during movement classification [7,9].

Despite the utility of straps, challenges remain in optimal sensor
placement for maintaining user comfort and mobility and
managing interference between sensors. Overcoming these
challenges includes performing comprehensive user studies and
data analyses to determine the best sensor placement, as well
as designing an ergonomic and adaptable sensor housing for
enhancing user comfort [43]. Thus, the ergonomic aspects of
the system, such as dimension, weight, and undesirable contact,
should be considered to accommodate various hand sizes and
deformations [16]. Recent innovations have focused on
achieving body compliance, ensuring comfort for the wearer,
and maintaining accurate sensing performance [43].

Furthermore, some studies used smart textiles or e-textiles with
embedded sensors as the sensing technology, which provided
great feasibility regarding wearability. The use of textiles in
health care and wellness applications has increased over the last
few years and is expected to grow further in the future [41]. The
primary benefit of using textile-based electrodes is that there is
no direct contact with the skin, and this prevents problems like
allergy and skin irritation [44]. Nevertheless, additional research
needs to be conducted for integrating accuracy, improving
usability, and implementing clinical validation. We expect that
the benefits provided by textiles, especially related to ease of
use and flexibility, and the advances in technology will make
them essential for tracking motion and muscle activity and
improving rehabilitation outcomes [44,45].

Wearable devices capture upper limb motion through data
acquisition and processing. The examined studies used various
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measurement methods to record data such as body segment
posture, amount of use, and ROM. Undoubtedly, data processing
is necessary for developing wearable devices as the signals
captured have to be interpreted. The most common filters are
Butterworth, low-pass, and band-pass, which are used to weaken
potential high-frequency noise in the accelerometer and
gyroscope. Moreover, Kalman, Madgwick, and complementary
filters are used to fuse the sensor readings and overcome
potential biomechanical constraints. These algorithms combine
the sensor readings to indicate the rotation and orientation of
the arm; however, they tend to require high computational
power.

Sampling rates across the analyzed studies varied significantly
and ranged from as low as 2 Hz for pressure-sensing
technologies to as high as 2000 Hz for motion-sensing
applications. Balancing high sampling rates and energy
efficiency remains a challenge for upper limb wearable devices,
as higher rates enhance tracking precision but can reduce battery
life. The wide range of rates indicates the adaptability and
flexibility of the sensors used for upper limb applications, as
they capture muscle movements as well as rapid motion
movements with precision. However, the selection of the right
battery to support the desired sampling rates remains a
challenge, and there is a need for careful selection to ensure
prolonged and uninterrupted data acquisition.

Different techniques are being developed that aim to improve
energy efficiency and extend the battery life of wearable devices.
For example, compressed sensing [46] allows the reduction of
the sampling rate of a signal, which can then be transmitted
using a compressed sparse representation and reconstructed
with minimal loss compared to the original signal [47,48].
Another algorithm that can be used with time series data, such
as motion and muscle data, and can improve energy efficiency
is change point detection [49]. The algorithm is used to detect
the point when a signal changes and is often used to assist with
action recognition [50]. Therefore, by detecting the time point
when a signal changes, the sampling rate can be adapted and
energy consumption can be reduced during nonrelevant activities
(eg, transition between motions, resting, etc) [49]. At the same
time, recently, research has been conducted on extending battery
life through energy harvesting [51]. The process relies on
capturing energy either directly from the human body, including
motion [43], or from the environment and converting it to power.

Feedback plays a crucial role in the overall system performance
as it provides useful information to therapists and researchers
and affects therapy outcomes by influencing motivation.
Feedback is given frequently to users who are less proficient or
whose posture needs to be improved. This is beneficial for future
applications as users should not rely on external feedback, but
instead follow their intrinsic feedback mechanics. Visual
information on a computer or smartphone/tablet is usually
provided, which is very useful, especially for systems that are
remotely monitored. Ultimately, the main aim of feedback is
to help users improve their performance while providing useful
data to therapists for better information processing and future
reference.

The improved computation power of electronics and advances
in ML algorithms have increased the use of these algorithms
for not only motion trajectory prediction [52] but also assessing
motion quality and providing relevant feedback during
rehabilitation [53]. Using ML with wearable devices through
Tiny Machine Learning (TinyML) has gained popularity
recently; however, many challenges remain [54]. Further
research in this area can revolutionize the use of wearable
technology in health care applications by providing greater
accuracy, and improved and more personalized feedback.
Feedback can also be further reinforced using haptic devices
[55]. However, current haptic devices can be cumbersome, and
more portable devices need to be developed to make such
technologies easy to use in a clinical setting [56].

Limitations and Conclusion
In this review, an effort was made to cover studies related to
upper limb wearable devices, including study purpose, sensing
technology, feasibility and wearability of the system, sensor
placement, methodology, and feedback received. However,
because of the variety of studies conducted in this area, every
aspect could not be covered, and hence, a summary was
provided for aspects with relatively more research. Limitations,
such as the positioning, number, and possible disruption of
sensors, are challenges that need to be overcome as they affect
the limb’s computed trajectory. Moreover, when a magnetometer
is used, ferromagnetic materials can affect its calibration, and
the data may not be transmitted with accuracy. Additionally,
the lack of uniformity of battery specifications (compared to
sampling rates) and sensor specifications highlights the
challenges in comparisons between these characteristics and
standardized data in this field. Although the studies reviewed
indicated a positive influence regarding the motivation of users,
more clinical trials need to be conducted, as they are important
to assess the effectiveness of the system. Another limitation is
the search strategy employed in this review. The search was
performed in only 4 specific databases: ACM Digital Library,
IEEE Xplore, PubMed, and ScienceDirect. The search may have
excluded relevant papers, and some studies might have been
overlooked. The low number of studies analyzed might not fully
capture the diversity of the current research in the field, which
limits the comprehensiveness of the review.

Future studies should aim to reduce the weight and dimensions
of the system and increase the sampling rate, which can facilitate
quick motion tracking with high accuracy. Additionally, efforts
should be made to fabricate upper limb devices that are more
flexible, powerful, and compact. The progress of ML algorithms
would be beneficial, particularly in IMU- and EMG-based
devices, as the rehabilitation process is automatically guided in
real-life settings while being able to provide remote intervention
[55]. Moreover, researchers should focus on the further
development of feedback as it should be more adaptable and
provide more options to users and therapists. In addition,
long-term clinical trials are essential for establishing the
effectiveness of wearable devices in real-world rehabilitation
settings. These trials should focus on larger and more diverse
patient groups to better establish the system’s efficacy.
Moreover, in broader health care frameworks, standardized
protocols and consistent measurement methods should be

J Med Internet Res 2024 | vol. 26 | e51994 | p. 14https://www.jmir.org/2024/1/e51994
(page number not for citation purposes)

Karoulla et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


developed to ensure the results are accurately compared, thus
ensuring the reliability of the system. Behavioral measurements
are also important, especially in training sessions. In conclusion,
future research should focus on integrating sensors and

improving usability and feasibility as upper limb wearable
devices are predictably becoming powerful tools, enabling
innovative rehabilitation treatments while improving the quality
of health care.
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Abbreviations
DOF: degrees of freedom
EMG: electromyography
GYS: graphene thin-film yarn sensor
IMU: inertial measurement unit
ML: machine learning
MMG: mechanomyography
ROM: range of motion
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