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Abstract

Background: With the advent of smart sensing technology, mobile and wearable devices can provide continuous and objective
monitoring and assessment of motor function outcomes.

Objective: We aimed to describe the existing scientific literature on wearable and mobile technologies that are being used or
tested for assessing motor functions in mobility-impaired and healthy adults and to evaluate the degree to which these devices
provide clinically valid measures of motor function in these populations.

Methods: A systematic literature review was conducted by searching Embase, MEDLINE, CENTRAL (January 1, 2015, to
June 24, 2020), the United States and European Union clinical trial registries, and the United States Food and Drug Administration
website using predefined study selection criteria. Study selection, data extraction, and quality assessment were performed by 2
independent reviewers.

Results: A total of 91 publications representing 87 unique studies were included. The most represented clinical conditions were
Parkinson disease (n=51 studies), followed by stroke (n=5), Huntington disease (n=5), and multiple sclerosis (n=2). A total of
42 motion-detecting devices were identified, and the majority (n=27, 64%) were created for the purpose of health care–related
data collection, although approximately 25% were personal electronic devices (eg, smartphones and watches) and 11% were
entertainment consoles (eg, Microsoft Kinect or Xbox and Nintendo Wii). The primary motion outcomes were related to gait
(n=30), gross motor movements (n=25), and fine motor movements (n=23). As a group, sensor-derived motion data showed a
mean sensitivity of 0.83 (SD 7.27), a mean specificity of 0.84 (SD 15.40), a mean accuracy of 0.90 (SD 5.87) in discriminating
between diseased individuals and healthy controls, and a mean Pearson r validity coefficient of 0.52 (SD 0.22) relative to clinical
measures. We did not find significant differences in the degree of validity between in-laboratory and at-home sensor-based
assessments nor between device class (ie, health care–related device, personal electronic devices, and entertainment consoles).

Conclusions: Sensor-derived motion data can be leveraged to classify and quantify disease status for a variety of neurological
conditions. However, most of the recent research on digital clinical measures is derived from proof-of-concept studies with
considerable variation in methodological approaches, and much of the reviewed literature has focused on clinical validation, with
less than one-quarter of the studies performing analytical validation. Overall, future research is crucially needed to further
consolidate that sensor-derived motion data may lead to the development of robust and transformative digital measurements
intended to predict, diagnose, and quantify neurological disease state and its longitudinal change.
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Introduction

Background
Patient care is changing with the dawn of smart sensing
technology. Mobile and wearable devices can provide
continuous as well as objective monitoring and assessment of
many health outcomes [1]. Until recently, outcomes that
represent various motor functions (ie, any movement of the
entire body or part of the body that is controlled by motor neuron
activity) have typically been measured by patient reports (eg,
number of falls) or physician assessment (eg, gait abnormalities).
Physician assessments are based on very brief observations in
an office or clinic [2], whereas self-reported outcomes are
subjective and often not as sensitive nor as supervised as
in-clinic measures [3]. Finally, measurements may vary between
assessors depending on the level of training, familiarity, and
experience [4,5].

Wearable technologies have recently emerged as a potential
supplemental source of data on motor function. Such
technologies could increase the objectivity and ease of
assessment for motor functions during clinical trials and care
while also allowing for a richer dimension of data to be captured.
Real-world and continuous monitoring of patient motor
functions through wearable and mobile sensors is increasingly
being investigated in areas such as disease progression through
motor fluctuations in Parkinson disease [6], detection of
amyotrophic lateral sclerosis [7], and tremor activity in essential
tremor [8].

Data from digital measurement solutions can enhance the quality
of clinical trials, as illustrated by the acceptance of wearable
device–measured stride velocity (95th percentile) by the
European Medicines Agency (EMA) as an end point in
Duchenne muscular dystrophy [9]. Given the implications these
new data courses could have on the field, the current regulatory
environment for mobile technologies is in flux [10]. US and
European regulatory bodies are responding to this emerging
opportunity by adapting their regulatory processes to these
technological advances [11].

Objectives
Previous reviews have described the characteristics of their
patient samples and sensors involved in collecting motor
function data [12-20]. However, they do not evaluate the degree
of validity produced by such sensors. This review follows the
terminology used in previous reviews [21,22] and differentiates
between analytical validation (ie, the same motion behavior is
measured by an independent source and compared with the
sensor-derived motion behavior) and clinical validation (ie, a
clinical characteristic or measure of interest is measured and
compared with the sensor-derived motion behavior). Gaining
insight into the current clinical validity and utility of the data
captured by mobile and wearable sensing technologies is of
utmost importance. So, the aim of this study was to describe

the existing scientific literature on digital measurement solutions
that are being used or tested for assessing motor functions in
mobility-impaired and healthy adults and to evaluate the degree
to which these tools provide clinically valid measures of motor
function in these populations. Specifically, we aimed to answer
the following research questions: (1) What types of digital
devices exist that capture motor function in mobility-impaired
and healthy populations? (2) In what types of studies and in
what populations have these devices been evaluated? (3) What
outcomes do these digital devices measure? (4) What types of
technologies and algorithms are used to capture and store the
data? (5) To what degree have these technologies and their
output been validated using established and recognized criteria?

Methods

Literature Review
This review was conducted in accordance with the Cochrane
Handbook for Systematic Reviews of Interventions [23], and
reporting is based on the PRISMA (Preferred Reporting Items
for Systematic Reviews and Meta-Analyses) guidelines [24].
We included clinical trials (randomized and nonrandomized)
as well as observational studies (case-control, retrospective
cohort, prospective cohort, and cross-sectional) that provided
validity estimates from wearable or mobile technologies to
assess motor functions in adults (aged ≥18 years). Studies
published in English after 2015 were included to focus on the
most advanced technologies that are being used to assess motor
function.

Study eligibility criteria were defined using an adapted PICO
(Population, Intervention, Comparator, Outcomes) framework.
We applied criteria based on the technology instead of the
intervention or comparator, as the research question focused on
the validity of measurement and not treatment efficacy (Table
S1 in Multimedia Appendix 1 [25-115]).

A systematic literature search was conducted (January 1, 2015,
to June 24, 2020) in the MEDLINE, Embase, and CENTRAL
databases. Searches of relevant conferences for the last 3 years
(2018-2020) were conducted via Embase. Search strings are
available in Tables S2-S6 in Multimedia Appendix 1. Gray
literature searches were also conducted to capture studies from
sources that were not included in the main literature databases,
which included the US Food and Drug Administration website
as well as the United States and European clinical trials registry
databases for clinical trials which had reported results but were
not published in peer-reviewed journals (for the years
2018-2020).

After duplicate removal, all titles and abstracts were screened
for potential eligibility according to the prespecified PICO
criteria, after which full-text articles were assessed using the
same criteria. Study selection was performed by 2 independent
reviewers, and disagreements were resolved through discussion.
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If no consensus could be achieved, a third researcher was
consulted for arbitration.

A total of 2 independent reviewers extracted all relevant data
from the final list of included studies. A reconciliation phase
was again deployed to resolve any discrepancies between the
reviewers, and a third reviewer intervened to resolve any
remaining conflicts. The following data were extracted where
available: (1) authors, year of publication, country, study setting,
and follow-up period; (2) study design; (3) participant
characteristics; (4) outcomes; (5) technology characteristics;
and (6) validity outcomes. Motor function outcomes were
manually sorted into categories by reviewers to facilitate
summary where necessary.

Study Quality
A total of 2 independent reviewers assessed the quality of the
included studies using the ROBINS-E (Risk Of Bias In
Nonrandomized Studies of Exposures) tool [116]. A third
investigator intervened to reach consensus if there were any
remaining unresolved discrepancies following reconciliation
between the decisions of the 2 reviewers.

Statistical Analyses
Effect size estimates were extracted from each study where
reported, including standardized mean differences (ie, Cohen
d), correlation coefficients (eg, Pearson r), sensitivity,
specificity, accuracy, and area under the curve (AUC). In cases
where studies provided none of these aforementioned effect
size classes, effect sizes were calculated based on the
information available in the manuscript using standard formulas
[117,118]. To facilitate comparison across the studies, extracted

effect sizes were converted to Pearson r–based effect size
estimates where possible. This extraction and conversion process
allows for studies to be directly compared via r-based effect
sizes, estimates of sensitivity and specificity, and estimates of
accuracy. The average effect sizes were calculated across all
studies as well as by specific study and sample characteristics
of interest. As r is bound by −1 and +1, rs were transformed
into Zr using the procedure described by Fisher for analyses
[119,120] and then back-transformed for reporting. Differences
across groups in the magnitude of obtained effect sizes were
tested using restricted information maximum likelihood derived
SEs [117] using the inverse variance weight [121]. A random
effects approach was taken, which includes in the denominator
an extra variance component representing true variation in the
population from which the included studies can be considered
a random sample. A significance threshold of .05 was used to
determine if values significantly differed between groups.

Results

Study Selection
A total of 9940 abstracts were identified from the electronic
databases, and 2 articles [25,26] were included from
handsearching of a systematic review identified in our searches
[122]. After the removal of duplicates and exclusion based on
title and abstract screening, 436 records remained for the
full-text screening. A list of the records excluded during full-text
screening and the reason for exclusion are provided in Table
S7 in Multimedia Appendix 1. A total of 91 publications
describing 87 primary studies fulfilled all inclusion criteria
(Figure 1).
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Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow diagram.

Study Characteristics and Data Collection
Across the 87 studies (n), the most common country settings
reported were the United States (n=15) [27-41], United Kingdom
(n=10) [42-53], Italy (n=5) [54-58], Spain (n=4) [59-62], South
Korea (n=4) [63-66], Germany (n=3) [67-69], and Japan (n=3)
[70-72]. At least 1 study was conducted in each of the following
countries: Canada (n=2) [73,74], the Netherlands (n=2) [75,76],
Portugal (n=2) [77,78], Sweden (n=1) [79,80], Taiwan (n=2)
[81,82], Australia (n=1) [83], Brazil (n=1) [84], Demark (n=1)
[85], France (n=1) [86], Israel (n=1) [87], Greece (n=1) [88,89],
Lithuania (n=1) [90], Norway (n=1) [91], and United Arab
Emirates (n=1) [92]. Of the remaining reporting studies, 6 were
multinational [93-98]. Sample size ranged from 8 [33] to 1465
[94] (median 40.5 participants). A total of 7995 participants
were enrolled in the included studies. Table S8 in Multimedia
Appendix 1 presents the list of included publications as well as
key study characteristics.

All 87 studies were observational in nature. Most studies (n=50)
did not report whether the study was conducted in a single-center
or multicenter setting. However, among those that did report,
20 and 17 studies were single center and multicenter,
respectively. Approximately half of the included studies were
conducted in a laboratory setting (n=42), 11 studies were home
based, and 15 were a combination of a laboratory-based and
home-based setting. The remaining 19 studies did not specify
the study setting. The included studies were categorized into 2
follow-up types: cross-sectional (n=62) with a follow-up period
of ≤1 week and longitudinal (n=25) in which participants were

followed up for ≥1 week. Follow-up length of longitudinal
studies ranged from 7 days [42,45,59,91,99] to 8 years [46]. A
total of 30 studies reported the time allocated for data collection;
in other words, the time needed to collect data in one session
of data collection. In addition, 18 studies were able to capture
their data in a session between 20 seconds [52,95] and 24 hours
[71]. Moreover, 13 studies required their participant to use the
device for multiple days for their collection period, which ranged
from 2 [41,62] to 14 consecutive days [40]. This review follows
the terminology used in previous reviews [21,22] for analytical
validation (ie, the same motion behavior is measured by an
independent source and compared with the sensor-derived
motion behavior) and clinical validation (ie, a clinical
characteristic or measure of interest is measured and compared
with the sensor-derived motion behavior). Analytic validation
was only performed in 21% (13/62) of cross-sectional studies
and 4% (1/25) of longitudinal studies. Most of these studies
performed clinical validation of sensor-based motion data.
Studies applied a wide variety of technologies to capture motion
outcomes. Motion data were captured by ≥30 different devices,
including novel wearables (18/42, 43% devices), smartphone
or smart watch (13/42, 31%), mass market digital technology
(7/42, 17%), other digital technology (eg, PC; 3/42, 7%), and
mass market wearables (1/42, 2%). Approximately 1 in 5 studies
included a mass market device.

In terms of quality, studies were generally low to moderate risk
of bias (Figure 2; Table S9 in Multimedia Appendix 1). Less
than 20% (14/42) of studies did not show that groups were
balanced in terms of key baseline characteristics and were
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considered high risk for confounding. The risk of bias arising
from measurement of the exposure was most often low because
exposures were generally whether the patient had a disease or
was healthy, and misclassifications were next to nonexistent.
For the domain of selection of participants into the study, studies
were often high risk of bias. Disease diagnosis (ie, the exposure)
did not generally coincide with the start of follow-up, and the
diseases being studied could fluctuate over time. Many of the
studies relied on volunteers to participate in the study, and this
may have led to participants entering the study if they were in
a particularly good or bad disease state (eg, Parkinson disease
has on and off states). Furthermore, no corrections that may

have alleviated selection biases in the analysis were conducted.
Studies were generally low risk with regard to the domain
concerned with the risk of bias owing to postexposure
interventions. By design, the included studies did not administer
interventions to alleviate the effects of exposures, and therefore,
bias was not a concern. Regarding missing data, this was not
often accounted for, leading to high risk of bias in that domain.
However, studies were generally low risk of bias for
measurement of outcomes, as motor function outcomes were
assessed objectively and similarly across groups. Finally, over
half of the studies were rated low risk for selection of the
reported result.

Figure 2. Distribution of study quality across included studies.

Concepts of Interest and Context of Use
Approximately half of the included studies compared the
association between sensor-derived motion data and a
standardized clinical assessment across diverse disease
conditions (n=44). Other studies compared mobility-impaired
diseased participants to a healthy control group of participants
with no mobility impairment (n=43). The most represented
disease condition was, by far, Parkinson disease (n=51); stroke
(n=5); Huntington disease (n=5); and depression, cognitive
impairment, cerebral palsy, and multiple sclerosis (n=2 for
each). All other disease groups were only represented in a single
study.

Among the 67 studies that reported the mean age of participants,
values ranged from 23.6 years [92] to 77.2 years [95] for
mobility-impaired participants and from 19.5 years [29] to 78.9
years [87] for healthy participants. Control groups were
generally well-matched by participant age and sex. Among the
71 studies that reported the proportion of males or females in
their sample, the average percentage of the sample that were
male ranged from 22.8% [62] to 100% [72,84] in
mobility-impaired participants and from 11% [41] to 100% [84]
in healthy participants. Studies with the largest sex imbalances
were those addressing the less frequently studied disease states
(ie, represented in only 1 or 2 studies). In contrast, Parkinson
disease, Huntington disease, and stroke reflected a more
balanced representation of females and males.

The primary motion outcomes were gait (n=30), gross motor
movements (n=25), fine motor movements (n=23), motor
symptom severity (n=9), bradykinesia (n=7), motor fluctuations
(n=6), dyskinesia (n=5), balance control (n=5), postural stability
(n=4), voice or speech impairments (n=3), facial expression
impairments (n=1), and nocturnal movements (n=1). A summary
of commonly reported outcomes by disease that the outcome
was measured in is provided in Table 1.

The most common motions that participants were required to
enact for sensor data collection across these studies were based
on diverse active motor tasks: multimovement tasks (16/87,
18%) including balancing and reaction time during tests such
as the Timed Up and Go, the Cognitive Dual Task Timed Up
and Go, and the Manual Dual Task Timed Up and Go,
unscripted daily activities (17/87, 20%), walking (10/87, 11%),
tapping (9/87, 10%), and scripted activities of daily living (7/87,
8%). Less commonly used motions (<5% of studies) included
several real-world tasks such as reaching, sit-to-stand motion,
seated tremors, wrist pronation-supination tracing or pointing,
typing, seated conversation, standing, and sleeping movement.
Together, these motions were used to extract ≥75 distinct motion
outcomes across the included studies. Most of these outcomes
only appeared in one study and were only measured at a single
sensor location in each study (per our inclusion criteria). One
exception was walking cadence, with different studies measuring
it using sensors worn at wrists, ankles, lower back, and chest
and in the pants pocket. Additional exceptions were tremor,
dyskinesia, and bradykinesia (each measured using sensors
placed on the wrists or ankles).
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Table 1. Summary of commonly reported outcomes by disease in which the outcome was investigated.

Motor function outcomeDisease and motor function outcome category

Acquired brain injury

Gross motor impairment or performance and upper body • Peak upper limb velocity [35]
• Upper limb velocity [35]

Alzheimer disease

Fine motor impairment or performance and continuous motion • Spiral tracing [82]

Depressive tendencies

Fine motor impairment or performance and discrete motion • Finger tap speed [92]
• Flight time [92]
• Hold time [92]

Healthy participants

Bradykinesia • Bradykinesia score [94,100]

Dyskinesia • Dyskinesia score [100]

Fine motor impairment or performance and continuous motion • Spiral tracing [82,90]

Fine motor impairment or performance and discrete motion • Correct finger taps [25,83]
• Finger tap accuracy [38,101]
• Finger tap count [38,95,101]
• Finger tap duration [38,101]
• Finger tap interval [38,101]
• Finger tap reaction time [38,42,58]
• Finger tap rhythm [42,95]
• Finger tapping test [102]
• Flight time [83,88,103]
• Hold time [88]

Gait • Joint velocity [77]
• Step cadence [69,75,81,99]
• Step count [40,41,44,74,104]
• Step length [44,46,81]
• Stride duration [44]
• Turning speed [26]
• Walking speed [41,69,81]

Gross motor impairment or performance and lower body • Lower limb velocity [105]

Gross motor impairment or performance and whole body • Joint velocity [106]

Motor symptom severity • Rest tremor [102]

Postural stability • Trunk acceleration [50]

Huntington disease

Cognitive impairment • Stroop Color and Word Test [96]

Dyskinesia • Chorea score [96,107]

Fine motor impairment or performance, discrete motion • Finger tap speed [96]

Gait • Step cadence [99]

Mild cognitive impairment

Fine motor impairment or performance and continuous motion • Spiral tracing [82]

Multiple sclerosis

J Med Internet Res 2022 | vol. 24 | iss. 11 | e37683 | p. 6https://www.jmir.org/2022/11/e37683
(page number not for citation purposes)

Guo et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Motor function outcomeDisease and motor function outcome category

• Finger tap count [25]Fine motor impairment or performance and discrete motion

• Turning speed [26]Gait

Neurological disordersa

• Spiral tracing [90]Fine motor impairment or performance and continuous motion

Neuromuscular disordersb

• Step count [104]Gait

Parkinson disease

• Bradykinesia score [34,48,53,94,97,100,108]Bradykinesia

• Stroop Color and Word Test [83]Cognitive impairment

• Dyskinesia score [53,100]
• Finger tapping test [56]

Dyskinesia

• Correct finger taps [83,109]
• Finger tap accuracy [38,101]
• Finger tap count [38,95,101]
• Finger tap duration [38,101]
• Finger tap interval [38,101]
• Finger tap reaction time [38,42,49]
• Finger tap rhythm [42,95]
• Finger tapping test [102]
• Flight time [88,103,110]
• Hold time [88]

Fine motor impairment or performance and discrete motion

• Freezing of gait [49,54,61,64,93,111,112]
• Step cadence [75]
• Step count [31,40]
• Step length [44,46]
• Stride duration [44]
• Turning speed [97]

Gait

• Peak upper limb velocity [33]Gross motor impairment or performance and upper body

• Joint velocity [106]Gross motor impairment or performance and whole body

• On or off state [34,60,62,68,98]Motor fluctuations

• Rest tremor [49,102]
• Tremor test [34,48,97]

Motor symptom severity

• Trunk acceleration [50]Postural stability

Rapid eye movement (REM) sleep behavior disorder

• Finger tap reaction time [42]
• Finger tap rhythm [42]

Fine motor impairment or performance and discrete motion

Stroke

• Step cadence [81]
• Step count [41,74]
• Step length [81]
• Walking speed [41,81]

Gait

Transthyretin familial amyloid polyneuropathy

J Med Internet Res 2022 | vol. 24 | iss. 11 | e37683 | p. 7https://www.jmir.org/2022/11/e37683
(page number not for citation purposes)

Guo et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Motor function outcomeDisease and motor function outcome category

• Lower limb velocity [78]
• Step length [78]
• Stride duration [78]
• Walking speed [78]

Gait

• Upper limb velocity [78]Gross motor impairment or performance and upper body

aIncluding Parkinson disease, Huntington disease, early dementia, cerebral palsy, and poststroke.
bIncluding Duchenne muscular dystrophy, limb-girdle muscular dystrophy, and spinal muscular atrophy.

Data Processing and Analysis
The process through which these researchers converted their
raw data to validity coefficients is illustrated in Figure 3. On
collection of the raw data, 2 parallel processes were typically

seen: outcome computation and algorithm or model
development. Following the completion of these 2 processes,
the model was subjected to either analytical or clinical
validation.

Figure 3. Flowchart of the process of converting raw data to validity coefficients.

Outcome Preparation
In ≥90% of the studies, the raw data were first preprocessed
before feature processing engineering and analyses. One
preprocessing step frequently seen among these studies was the
splitting of raw data into temporal epochs or slices. This was
done because training an algorithm to detect movement features
across long periods greatly reduced the algorithm’s validity.
Data were trimmed by temporal position (eg, the beginning and
ending of the motion recording) or based on extreme values
(eg, outliers >4 SDs from the mean). Raw data were subjected
to some form of standardization or transformation in ≥90% of
the studies.

Although algorithm training (eg, feature selection and threshold
determination) typically occurred using data across all
participants, several studies took the approach of building the
feature detection algorithm using data across all participants

but then allowing each participant to vary in latter stages such
as feature selection or determining thresholds [34,54,63,68].
Validity estimates from this smaller group of studies were
similar in magnitude to those studies that applied the same
features and thresholds to the classification of all participants.

Researchers have to decide which of the hundreds of identified
candidate features to treat as a signal (by retaining them in the
model) and which to dismiss as mostly noise (by excluding
them from the model). Relatively few studies clearly described
whether they moved all detected features to the next analytic
stage (feature selection), but some studies compared prediction
based on all extracted features to prediction based on
top-performing features [42,49]. These studies reported that the
inclusion of additional features did not guarantee a meaningful
increase in algorithm performance or validity. One study using
smartphones to assess Parkinson disease symptoms found AUC
values >0.90 for 998 detected features, with a drop to 0.75 when
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based on the top 30 features [49]. A second study of participants
with Parkinson disease concluded, “Accuracies obtained using
the 30 most salient features were broadly comparable with the
corresponding sensitivity and specificity values obtained using
all 998 features” [42].

Algorithm or Model Development
The included studies showed no clear preference regarding
algorithms for feature selection or classification, but the 2 most
frequently applied approaches were support vector machines
(12/87, 14%) and random forests (4/87, 5%). Authors of these
studies were sensitive to the complications of trying to train a
classification model with groups of different sizes, as most of
the comparative studies included in this review include
approximately equal sizes of participants with a disease or
disorder and healthy controls.

No consistent pattern emerged from within-study comparisons
of feature selection algorithms. A wrist-based sensor was able
to detect upper limb movement among participants with
pre-Parkinson disease best when using random forests relative
to support vector machines and naïve Bayes [55]. A smartphone
app testing motor impairment found that both neural networks
and boosting outperformed support vector machines and Fisher
linear discriminant analysis [90]. Not all motions required
feature selection across studies (several needed only to define
logic rules to estimate movement angles using geometry), and
some studies used proprietary algorithms that were not described
in detail. One study that studied freezing of gait among
participants with Parkinson disease using a smartphone app
found neural networks performed better than other bagging
algorithms, including random forest, multilayer perception,
decision tree, support vector machine, and naïve Bayes [64].
Another study on motor symptoms among participants with
Parkinson disease using ankle-worn sensors found that support
vector machines performed better than logistic regression and
decision trees [80]. Using smartphone motion data to predict
motor impairment among participants with Parkinson disease,
another study found that random forests based on Ridge
regression outperformed those based on Lasso, or Gini impurity,
and that linear support vector machines outperformed logistic
regression and boosting [103]. The sole consistent pattern that
emerged was that supervised machine learning techniques
performed better than unsupervised techniques (eg, naïve
Bayes).

Analytical and Clinical Validation
The most common validity criterion was clinical condition
(37/87, 43%), which was used in many of these studies to
establish known-group construct discriminant validity of
sensor-derived motion data by comparing participants with a
diseased condition to healthy controls (Table S10 in Multimedia
Appendix 1). The second most common validity criterion was
the clinical validity established by assessing the convergence
or concurrence with traditional standardized clinical assessments
(30/87, 34%; eg, Wolf Motor Function Test and Unified
Parkinson Disease Rating Scale). Other criteria were clinician
ratings (7/87, 8%), research device (9/87, 10%), treatment status
(3/87, 3%), and patient-reported outcome (1/87, 1%).
Longitudinal studies were more likely to use nonsupervised

assessments, whereas cross-sectional studies were more likely
to use clinician-supervised assessments.

Across studies, motion data from the sensors identified showed
an average Pearson r clinical validity coefficient of 0.52 (Figure
4 [27,28,31,35-41,44,47,48,50-53,57,58,66-74,76,77,80-84,86,
91,92,95-99,101,102,104,106,108-110,112,113,115]). Among
the studies that did not provide sufficient information to
calculate a Pearson r, the average validity was 0.83 (sensitivity),
0.84 (specificity), and 0.90 (accuracy). These values could be
interpreted as very good [123]. The magnitude of validity
coefficients did not vary (P=.10) between health care–related
devices (mean r=.47), personal electronic devices (mean r=.44),
and entertainment consoles (mean r=.63). Validity coefficients
for motor function generated by healthy adults were higher than
those generated by participants with a disease state or
impairment (z score 3.19; P=.001). The only statistical decision
that consistently predicted higher validity coefficients was the
decision to trim observations during the preprocessing stage
based on value (ie, outliers; z score 2.10; P=.04). There was no
difference in validity coefficients across trimming observations
based on temporal placement, transforming data, standardizing
data, or which feature detection and validation analyses were
used. The funnel plot from these studies was asymmetrical in
a manner consistent with bias toward higher coefficients (Figure
S1 in Multimedia Appendix 1). The magnitude of validity
coefficients did not significantly vary across the different device
types (Table 2).

Taken as a whole, no consistent pattern emerged from
within-study comparisons of the relative analytic validity of
any specific motion signal. One study using Kinect found high
Pearson r validity coefficients (r>0.50) for more than 40 distinct
motion outcomes but very low validity coefficients for a handful
including deflection range roll (measured in degrees), mean
sway velocity roll (measured in degrees per second), and
up-down deviation (measured in centimeters) [69]. A second
study using Kinect found Pearson r validity coefficients above
0.50 for variables related to steps taken, distance, and speed but
coefficients below 0.50 for variables related to angles (eg, trunk,
hips, ankle, trunk, upper limb, and full body) [78]. A third study
using a triaxial accelerometer worn on the waist found Pearson
r validity coefficients above 0.50 for gait, arising from chair,
body bradykinesia, hypokinesia, and overall posture and validity
coefficients below 0.50 for rigidity of lower and upper
extremities axial rigidity, postural stability, legs agility, and
tremors in lower or upper extremities [98]. These numbers are
in the same range as single items from widely established
clinical tools [124-126]. As the validity coefficients for these
single motions were moderate, it reinforces the need for future
studies and clinical applications to include multiple validated
motion signals for any screening or diagnostic tool to achieve
adequate levels of composite test validity.

Regarding clinical validation, no clear within-study evidence
emerged regarding the relative superiority or inferiority of
motion data captured in laboratory settings versus data captured
in home settings (Table 1). For example, 1 study comparing
typing behavior of participants recently diagnosed with
Parkinson disease to the typing behavior of healthy controls
found AUC values of 0.76 (when administered at home) versus
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0.83 (when administered in clinic) [59]. A second study
comparing participants with Parkinson disease to healthy adults
on motor function during an activities of daily living task found

slightly higher accuracy, sensitivity, and specificity when the
task was completed at home [87].

Figure 4. Forest plot of the validity of sensor-derived digital measurements of motor function. Middle points represent the point estimate effect size
Pearson r, and the surrounding bars represent 95% CI. Colors indicate the type of validity criteria used.
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Table 2. Summary table of the between-study and within-study findings on the differences in the validity of sensor-derived measurements of motor
function across various groups.

Within-study findingsBetween-study (ie, meta-analytic) findingsAre there differences in the
validity of sensor-derived
measures of motor function
as captured

Insufficient data to evaluateUsing mass market devices
vs medical sensors?

• No: digital technology vs mass market digital technolo-
gies (P=.22); mass market digital technology vs
medical devices (P=.21); digital technology vs medical
devices (P=.32)

Insufficient data to evaluateAt specific sensor locations? • No: wrist vs ankle (P=.73); wrist vs chest (P=.73);
wrist vs hand (P=.54); wrist vs thigh (P=.59); wrist
vs back (P=.63); wrist vs pocket (P=.78); wrist vs
nonwearable (0.31)

• No: ankle vs chest (P=.46); ankle vs hand (P=.38);
ankle vs thigh (P=.73); ankle vs waist (P=.60); ankle
vs back (P=.49); ankle vs pocket (P=.65); ankle vs
nonwearable (P=.58)

• No: chest vs hand (P=.30); chest vs thigh (P=.39);
chest vs waist (P=.70); chest vs back (P=.82); chest
vs pocket (P=.50); chest vs nonwearable (P=.89)

• No: hand vs thigh (P=.58); hand vs waist (P=.75);
hand vs back (P=.78); hand vs pocket (P=.42); hand
vs nonwearable (P=.53)

• No: thigh vs waist (P=.86); thigh vs back (P=.73);
thigh vs pocket (P=.54); thigh vs nonwearable (P=.40)

• No: waist vs back (P=.87); waist vs pocket (P=.39);
waist vs nonwearable (P=.24)

• No: back vs pocket (P=.45); back vs nonwearable
(P=.48); pocket vs nonwearable (P=.50)

No; 1 study found AUCa values of 0.76 (when administered
at home) vs 0.83 (when administered in clinic) [59]. A

home vs in the laboratory? • No; P=.33

second study found slightly higher accuracy, sensitivity,
and specificity when the task was completed at home [87].

No; One study found high Pearson r validity coefficients
(r>0.50) for over 40 distinct motion outcomes but very low

In longitudinal vs cross-sec-
tional studies?

• No; P=.29

validity coefficients for a handful, including deflection rage
roll (measured in degrees), mean sway velocity roll (mea-
sured in degrees per second), and up-down deviation
(measured in centimeters) [69]. A second study found
Pearson r validity coefficients above 0.50 for variables re-
lated to steps taken, distance, and speed, but coefficients
below 0.50 for variables related to angles (eg, trunk, hips,
ankle, trunk, upper limb, and full body) [78]. A third study
found Pearson r validity coefficients above 0.50 for gait,
arising from chair, body bradykinesia, hypokinesia, and
overall posture and validity coefficients below 0.50 for
rigidity of lower and upper extremities axial rigidity, pos-
tural stability, legs agility, and tremors in lower or upper
extremities [98].

Insufficient data to evaluateIn healthy vs motor impaired
patients?

• Yes; validity higher among healthy adults, z score
3.19, P=.001
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Within-study findingsBetween-study (ie, meta-analytic) findingsAre there differences in the
validity of sensor-derived
measures of motor function
as captured

No; One study was able to detect movement best when
using random forests relative to support vector machines
and naïve Bayes [55]. A second study found that both
neural networks and boosting outperformed support vector
machines and Fisher linear discriminant analysis [90]. A
third study found neural networks performed better than
other bagging algorithms including random forest, multi-
layer perception, decision tree, support vector machine,
and naïve Bayes [64]. A fourth study found support vector
machines performed better than logistic regression and
decision trees [80]. A fifth study found that random forests
based on Ridge regression outperformed those based on
Lasso, or Gini impurity, and that linear support vector
machines outperformed logistic regression and boosting
[103]. The sole consistent pattern that emerged was that
supervised machine learning techniques performed better
than unsupervised techniques (eg, naïve Bayes).

• Insufficient data to evaluateUsing different feature detec-
tion algorithms?

Insufficient data to evaluate• Insufficient data to evaluateUsing particular motion
sensor signal types?

No; One study found AUC values >0.90 for 998 detected
features, with a drop to 0.75 when based on the top 30
features [49]. A second study concluded “Accuracies ob-
tained using the 30 most salient features were broadly
comparable with the corresponding sensitivity and speci-
ficity values obtained using all 998 features” [42].

• Insufficient data to evaluateUsing all vs a subset of fea-
tures?

No; Although algorithm training typically occurred across
a sample, several studies took the approach of starting the
algorithm (feature detection) using data across all partici-
pants but then allowing each patient to vary in later stages
such as feature selection or determining thresholds
[34,54,63,68]. Validity estimates from this smaller group
of studies were similar in magnitude to those studies that
applied the same features and thresholds to the classification
of all participants.

• No; P=.48With the thresholds held
constant across patients vs
patient-specific thresholds?

Insufficient data to evaluate• No; P=.16Using clinically supervised
vs nonsupervised assess-
ments of patient clinical sta-
tus?

Insufficient data to evaluate• Yes; trimming outliers is beneficial, z score 2.10,
P=.04

With outliers trimmed vs re-
tained in the feature detec-
tion stage?

Insufficient data to evaluate• No; P=.74With transformed data vs
untransformed data?

Insufficient data to evaluate• No; P=.60With standardized data vs
unstandardized data?

aAUC: area under the curve.

Discussion

Principal Findings
To our knowledge, this is the first systematic literature review
to evaluate the degree to which wearable and mobile
technologies provide clinically valid measures of motor function
in mobility-impaired and healthy adults. The identified literature
generally consisted of proof-of-concept studies, which aimed
to pilot a device and assess whether it could validly measure
motor functions. Consequently, most studies used a short

follow-up period (<1 week) and had a total sample size of <50
participants. Unsurprisingly, many of the longitudinal studies
prioritized nonsupervised measures. Even so, taken together,
these studies provide a respectable evidence base supporting
the potential these movement sensors have to inform clinical
practice.

As the eligibility criteria for our review were inclusive in terms
of population, we identified a large range of disease types, which
were all but one (chronic obstructive pulmonary disease)
nervous system condition (Table 1); however, the most common
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disease was Parkinson disease, with stroke and Huntington
disease coming in a very distant second and third place. The
strong focus on Parkinson disease in this literature may be
because of its prevalence or perhaps because motor function
symptoms are a major characteristic of Parkinson disease for
diagnosis and prognosis assessment purposes, making Parkinson
disease an ideal model disease for testing the use of mobile
technologies [127]. However, it is most probably a mixture of
these 2 hypotheses. Parkinson disease is also one of the few
diseases with Food and Drug Administration–approved devices
(eg, NexStride and Personal KinetiGraph), which assesses motor
function to inform treatment decisions. The field would benefit
from additional study of mobile technology–assessed motor
function among other neurological diseases, including multiple
sclerosis, spinal muscular atrophy, amyotrophic lateral sclerosis,
and Alzheimer disease. In addition, future studies might consider
the advantages of assessing digital devices per neurological
impairment (such as difficulties in ambulation or upper limbs)
rather than per disease.

Successful integration of wearable-based movement data into
clinical tools requires both analytic validation and clinical
validation. However, most of the reviewed literature compared
wearable sensor-derived motion data to omnibus measures of
functioning or disease progression (ie, clinical validation). More
studies need to perform analytic validation by comparing
wearable sensor-derived motion data to the same motions
measured by another source (eg, observer assessment and
motion-capture technology). Observed motions may be highly
correlated with omnibus assessments of motor skills or disease
status (ie, clinical validation), but the foundation of approval
as a clinical end point can only be met if the motions identified
using the sensor have been shown to be the exact motions that
have been approved by the governing or regulatory body. Using
as an example the EMA’s recent approval of 95% stride velocity
as an approved secondary end point in Duchenne muscular
dystrophy, appeal to the EMA’s approval of wearable sensor
stride velocity data as an end point for a given study requires
evidence that when the used algorithm claims to measure stride
velocity (95th percentile), there be evidence that the algorithm
has, in truth, measured stride velocity. Future research in this
area should focus their attention on analytic validation.

There was considerable variation in methodological approaches.
The review revealed one of the key reasons why this field may
still show such inconsistency in analytic approach; it is still
developing. Evidence of this is seen in which motion variables
could be identified by the algorithms. Despite the hundreds of
motion-derived outcome variables identified across these studies,
not all theoretically meaningful motions could be recovered.
One study of participants with Parkinson disease concluded,
“Unfortunately, we failed to find parameters that reflected
fatigue (decrement response) and hesitation (intertap
irregularity), which are characteristics of motor dysfunction in
Parkinson’s disease” [110]. Those authors offered that more
precise definitions of fatigue and hesitation may be needed to
recover them in clinical settings with a smartphone-based
tapping test similar to the one used in that study. In addition,
the motor functions viewed by some authors as theoretically
relevant were occasionally overshadowed by nonmotor signals.

The tendency for studies to report diminishing returns after a
certain point for additional motion signals is statistically
analogous to other clinical efforts to identify causal markers
from a multitude of candidates, which revealed many initially
flagged markers as spurious [128]. Future studies should include
graphical displays to identify inflection points (similar to the
scree plot in factor analysis or the elbow plot in latent class
analysis) to help show where the statistical signal (or true score)
from additional motions becomes outweighed by statistical
noise.

The moderate to high validity coefficients reported in the
identified literature may support the potential for sensor-derived
motor function data from digital health technology tools to
eventually contribute to screening, diagnosis, and monitoring
of neurological diseases in particular. No significant differences
in analytic or clinical validity estimates were found when
comparing data generated by mass market devices (eg,
smartphones, smartwatches, and Fitbits), game consoles (ie,
Nintendo Wii and Microsoft Kinect or Xbox), and marketed
motion sensors (eg, ActiGraph, ActivPAL, Axivity, Dynaport,
KinetiSense, Opal devices, and PAMSys-X). Furthermore, the
motion data provided by these technologies produced equivalent
validity estimates in laboratory-based and home-based settings.
This further supports the future potential for digital measurement
solutions to provide clinically meaningful data and eventually
become the gold standard for assessing motor behaviors. The
degree and rate of application for motor function data from these
devices to clinical practice will depend on how soon clear
evidence bases are established for given sensor locations for
given movements of interest.

Translation of these motor signals into clinical application is
aided by demonstrating sufficient validity outside the scripted
protocols of a controlled laboratory setting. The reviewed
literature showed that scripted motion tasks were important
when only a few minutes of motion data were to be captured.
Furthermore, motion data from unscripted everyday living with
longer data collection periods were also shown to be adequate
and deemed complementary, as episodic scripted assessments
of confined tasks might not capture the complex spectrum of
potentially altered components of motor function in an
unconstrained ecologic setting [129].

As a whole, the reviewed literature revealed several best
practices as well as a few cautionary tales for mobile or wearable
sensor-based movement data. Although cross-validation
techniques all seek to counteract the inflation of validity
coefficients that can occur during machine learning techniques,
they can produce different results [42]. Despite these best
practices, there remained indirect evidence of model overfitting
in the form of some abnormally high validity coefficients in the
final models (ie, specificity of 1.0, which is perfect) [130,131].

The reviewed literature also highlights areas to consider during
the development of any clinical application. One illustration
from this review is the critical role of thresholds [132], which
require researchers to decide between manual versus automatic
thresholds [133] and global versus person specific [134].
Leveraging the strengths of these modeling approaches while
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keeping them robust and flexible will be important to consider
as they are scaled up to create clinical applications [132].

Comparison With Previous Reviews
We identified a number of similar literature reviews during our
study selection [12-20]. All identified reviews synthesized their
evidence qualitatively, and none provided a quantitative
synthesis of the validity of motion data generated from these
sensors among patients with neurological conditions. Of the 9
identified reviews, 1 was narrative [16], whereas the remaining
were systematic reviews. None of the systematic reviews
focused on neurological disorders. Overall, 2 reviews focused
specifically on swimming motions [12,13], 2 were focused on
older adult patients with no specific disease [15,19], and 2
reviews focused on only upper [14] and lower limb movements
[18]. Of the remaining 2 systematic reviews with similar
objectives and scope to that of our own, the paper by Díaz et al
[17] aimed to review the current literature on the use of wearable
sensors in gait, balance, and range of motion analysis. Diseases
of participants also varied across their 56 included studies and
included a mix of neurological disorders (eg, Parkinson disease,
Alzheimer disease, and multiple sclerosis), as well as stroke,
amputees, and healthy participants. Similar to our own review,
the authors found that most body-worn devices were complex
to use and required strong experience in data analysis to interpret
the collected information. In addition, the authors pointed out
a need for further validation and improvements in sensor systems
for them to be used as reliable and accurate clinical devices. A
second systematic review conducted by Kristoffersson and
Lindén [20] provided a qualitative synthesis of 73 published
articles on wearable body sensors used for health monitoring.
Similar to our review, the authors found that included studies
were generally observational in design and small in sample size.
These methodological considerations should be taken into
account for future studies testing clinical devices for assessing
motor function.

Strengths and Limitations
One strength of this review is that it includes more studies than
any other review of similar scope that we identified during our
study selection process [12-20]. This review is unique relative
to other reviews on this same topic because it summarizes the
validity estimates across the included studies instead of simply
describing the characteristics of the samples and sensors
involved [15-20]. This provides an evaluation of the degree of
validity produced by such sensors. An additional strength was
that we identified several meaningful patterns in this literature
(eg, an absence of consistency in analytic approaches, equivalent
validity of motion data collected at home or in a laboratory, and
higher validity coefficients for healthy adults), which can help
guide future research in this area. A final strength of this review
is that it addresses statistical issues in this field. Although most
reviews in this research area are silent as to statistical concerns,
the findings of this review are consistent with the small group
of previous reviews, which have also noted the statistical
challenges present in this literature [12-14].

A limitation of this review is insufficient statistical power to
address several questions of interest because of the
methodological inconsistency and resulting sparseness across

studies. A second limitation of this review is that the literature
showed some signs of potential bias, which could limit the
trustworthiness of the aggregate effect sizes. Examples of
potential bias identified during the study quality assessment
were that few studies provided a clear description of whether
data were available for all participants throughout the study,
and no studies corrected for potential selection biases in their
analyses. In addition, it is unclear whether the patterns seen in
the funnel plot and elsewhere are evidence of publication bias,
selective outcomes, or an artifact of the dominant analytic
approaches in this field. Much of the reviewed literature has
focused on clinical validation, with less than one-fourth of the
studies performing analytical validation. As important as clinical
validation is for establishing the clinical and real-world utility
of sensor-derived motion data, more studies are needed that
focus on the fundamental step of analytic validation. An
additional limitation may be the fact that some diseases are not
as prevalent or well-studied than others, which may have
impacted their representation in our analyses. Finally, our review
was restricted to publications available in the English language.
Therefore, some technologies being investigated for motor
function assessment in non–English-speaking countries may
have been missed.

Considerations for Future Research
Several questions we initially hoped to answer in this review
could not be addressed because of lack of consistency across
studies (eg, which technology or sensor is used, where the sensor
is placed, which motions are required by participants,
preprocessing steps, feature detection and selection algorithms,
and number of motion features retained for the prediction
algorithm). Even within studies examining the same disease
state, there was limited consistency in these characteristics. As
a result, we cannot say which movements and motion outcomes
produce the most valid indicators of different neurological
disease states, or what data preprocessing, feature processing
engineering, and analysis should be considered best practices
for converting raw sensor-derived motion data into meaningful
digital measurements or biomarkers. It was notable that many
of the most common movements from the larger clinical
literature (eg, reaching, sit-to-stand, tracing, and pointing)
appeared so infrequently in this literature. This lack of
consistency in the literature could have affected the validity
estimates [135-139], and the lack of harmonization across
studies limits any inference about methodological or analytic
decisions [140].

An earlier review described continuous monitoring using
movement-detecting wearable sensors as a potential source of
ground truth for motor function data, which were previously
available only through participant self-reports [141]. On the
basis of the reviewed literature, the field cannot yet provide this
type of objective truth. An existing algorithm needs to be applied
to multiple samples without additional adjustments or
enhancements and show an aggregate performance that
approximates the estimates provided by the studies included in
this review. No analytic technique will solve this issue; the only
true solution is replication attempts in new samples. Researchers
should report how many of the detected features were moved
to feature selection to give readers a sense of how many features
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were excluded, a sense of the parsimony of the resultant model,
and an awareness of how likely it is that the model may have
been overfit. Care must be taken to design the classification
algorithm in a way that maximizes the likelihood that it can
perform equally well in future samples. This priority needs to
be evaluated at each stage of the analysis: data set preparation,
preprocessing, feature extraction, algorithm development, model
development or validation, and analytical or clinical validation.

Conclusions
In conclusion, sensor-derived motion data can be leveraged to
validly predict disease status for a variety of neurological
conditions. Future research will elucidate to what extent
sensor-derived motion data may yield robust and transformative
digital measurements intended to quantify, diagnose, and predict
neurological disease state and its longitudinal change.

Acknowledgments
The authors would like to thank Gráinne Donnellan, Sarah Hill, and Ana Howarth of Evidinno Outcomes Research Inc (Vancouver,
British Columbia, Canada) for their contributions to conducting this systematic literature review.

Conflicts of Interest
AS, PAC, CM, and SB report employment with Biogen. During completion of the work related to this manuscript, CCG was an
employee of Biogen. CCG’s current affiliation is ActiGraph, LLC, Pensacola, Florida, US, which was not involved in this work.
TS, KH, and MSF report employment with Evidinno Outcomes Research Inc, which was contracted by Biogen to conduct this
study.

Multimedia Appendix 1
Supplemental information on the methods and results of the systematic literature review.
[DOCX File , 288 KB-Multimedia Appendix 1]

References

1. Laguna MA, Finat J. Remote monitoring and fall detection: multiplatform Java based mobile applications. In: Proceedings
of the 3rd International Workshop on Ambient Assisted Living. 2011 Presented at: IWAAL '11; June 8-10, 2011;
Torremolinos-Málaga, Spain p. 1-8. [doi: 10.1007/978-3-642-21303-8_1]

2. Reiman MP, Manske RC. The assessment of function: how is it measured? A clinical perspective. J Man Manip Ther 2011
May;19(2):91-99 [FREE Full text] [doi: 10.1179/106698111X12973307659546] [Medline: 22547919]

3. Toosizadeh N, Mohler J, Lei H, Parvaneh S, Sherman S, Najafi B. Motor performance assessment in Parkinson's disease:
association between objective in-clinic, objective in-home, and subjective/semi-objective measures. PLoS One 2015 Apr
24;10(4):e0124763 [FREE Full text] [doi: 10.1371/journal.pone.0124763] [Medline: 25909898]

4. Duff SV, He J, Nelsen MA, Lane CJ, Rowe VT, Wolf SL, et al. Interrater reliability of the Wolf Motor Function
Test-Functional Ability Scale: why it matters. Neurorehabil Neural Repair 2015 Jun;29(5):436-443 [FREE Full text] [doi:
10.1177/1545968314553030] [Medline: 25323459]

5. Ko J, Kim M. Reliability and responsiveness of the gross motor function measure-88 in children with cerebral palsy. Phys
Ther 2013 Mar;93(3):393-400. [doi: 10.2522/ptj.20110374] [Medline: 23139425]

6. Patel S, Lorincz K, Hughes R, Huggins N, Growdon J, Standaert D, et al. Monitoring motor fluctuations in patients with
Parkinson's disease using wearable sensors. IEEE Trans Inf Technol Biomed 2009 Nov;13(6):864-873 [FREE Full text]
[doi: 10.1109/TITB.2009.2033471] [Medline: 19846382]

7. Saadeh W, Altaf MA, Butt SA. A wearable neuro-degenerative diseases detection system based on gait dynamics. In:
Proceedings of the 2017 IFIP/IEEE International Conference on Very Large Scale Integration. 2017 Presented at: VLSI-SoC
'17; October 23-25, 2017; Abu Dhabi, United Arab Emirates p. 1-6. [doi: 10.1109/vlsi-soc.2017.8203488]

8. Rigas G, Tzallas AT, Tsipouras MG, Bougia P, Tripoliti EE, Baga D, et al. Assessment of tremor activity in the Parkinson's
disease using a set of wearable sensors. IEEE Trans Inf Technol Biomed 2012 May;16(3):478-487. [doi:
10.1109/TITB.2011.2182616] [Medline: 22231198]

9. Qualification opinion on stride velocity 95th centile as a secondary endpoint in Duchenne Muscular Dystrophy measured
by a valid and suitable wearable device*. European Medicines Agency. 2019 Apr 26. URL: https://www.ema.europa.eu/
en/documents/scientific-guideline/
qualification-opinion-stride-velocity-95th-centile-secondary-endpoint-duchenne-muscular-dystrophy_en.pdf [accessed
2021-04-09]

10. Aronson JK, Heneghan C, Ferner RE. Medical devices: definition, classification, and regulatory implications. Drug Saf
2020 Feb;43(2):83-93. [doi: 10.1007/s40264-019-00878-3] [Medline: 31845212]

11. H.R.34 - 21st Century Cures Act. US Congress. Washington, DC, USA: Library of Congress; 2016. URL: https://www.
congress.gov/bill/114th-congress/house-bill/34 [accessed 2021-04-09]

12. de Magalhaes FA, Vannozzi G, Gatta G, Fantozzi S. Wearable inertial sensors in swimming motion analysis: a systematic
review. J Sports Sci 2015;33(7):732-745. [doi: 10.1080/02640414.2014.962574] [Medline: 25356682]

J Med Internet Res 2022 | vol. 24 | iss. 11 | e37683 | p. 15https://www.jmir.org/2022/11/e37683
(page number not for citation purposes)

Guo et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=jmir_v24i11e37683_app1.docx&filename=8aa6607a9e36ca73200cad2dd124c830.docx
https://jmir.org/api/download?alt_name=jmir_v24i11e37683_app1.docx&filename=8aa6607a9e36ca73200cad2dd124c830.docx
http://dx.doi.org/10.1007/978-3-642-21303-8_1
https://europepmc.org/abstract/MED/22547919
http://dx.doi.org/10.1179/106698111X12973307659546
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22547919&dopt=Abstract
https://dx.plos.org/10.1371/journal.pone.0124763
http://dx.doi.org/10.1371/journal.pone.0124763
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25909898&dopt=Abstract
https://europepmc.org/abstract/MED/25323459
http://dx.doi.org/10.1177/1545968314553030
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25323459&dopt=Abstract
http://dx.doi.org/10.2522/ptj.20110374
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23139425&dopt=Abstract
https://europepmc.org/abstract/MED/19846382
http://dx.doi.org/10.1109/TITB.2009.2033471
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19846382&dopt=Abstract
http://dx.doi.org/10.1109/vlsi-soc.2017.8203488
http://dx.doi.org/10.1109/TITB.2011.2182616
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22231198&dopt=Abstract
https://www.ema.europa.eu/en/documents/scientific-guideline/qualification-opinion-stride-velocity-95th-centile-secondary-endpoint-duchenne-muscular-dystrophy_en.pdf
https://www.ema.europa.eu/en/documents/scientific-guideline/qualification-opinion-stride-velocity-95th-centile-secondary-endpoint-duchenne-muscular-dystrophy_en.pdf
https://www.ema.europa.eu/en/documents/scientific-guideline/qualification-opinion-stride-velocity-95th-centile-secondary-endpoint-duchenne-muscular-dystrophy_en.pdf
http://dx.doi.org/10.1007/s40264-019-00878-3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31845212&dopt=Abstract
https://www.congress.gov/bill/114th-congress/house-bill/34
https://www.congress.gov/bill/114th-congress/house-bill/34
http://dx.doi.org/10.1080/02640414.2014.962574
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25356682&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


13. Mooney R, Corley G, Godfrey A, Quinlan LR, ÓLaighin G. Inertial sensor technology for elite swimming performance
analysis: a systematic review. Sensors (Basel) 2015 Dec 25;16(1):18 [FREE Full text] [doi: 10.3390/s16010018] [Medline:
26712760]

14. Walmsley CP, Williams SA, Grisbrook T, Elliott C, Imms C, Campbell A. Measurement of upper limb range of motion
using wearable sensors: a systematic review. Sports Med Open 2018 Nov 29;4(1):53 [FREE Full text] [doi:
10.1186/s40798-018-0167-7] [Medline: 30499058]

15. Baig MM, Afifi S, GholamHosseini H, Mirza F. A systematic review of wearable sensors and IoT-based monitoring
applications for older adults - a focus on ageing population and independent living. J Med Syst 2019 Jun 15;43(8):233.
[doi: 10.1007/s10916-019-1365-7] [Medline: 31203472]

16. Chen M, Ma Y, Song J, Lai CF, Hu B. Smart clothing: connecting human with clouds and big data for sustainable health
monitoring. Mobile Netw Appl 2016 Jul 7;21(5):825-845. [doi: 10.1007/s11036-016-0745-1]

17. Díaz S, Stephenson JB, Labrador MA. Use of wearable sensor technology in gait, balance, and range of motion analysis.
Appl Sci 2020;10(1):234. [doi: 10.3390/app10010234]

18. Fong DT, Chan YY. The use of wearable inertial motion sensors in human lower limb biomechanics studies: a systematic
review. Sensors (Basel) 2010;10(12):11556-11565 [FREE Full text] [doi: 10.3390/s101211556] [Medline: 22163542]

19. Kekade S, Hseieh CH, Islam MM, Atique S, Mohammed Khalfan A, Li YC, et al. The usefulness and actual use of wearable
devices among the elderly population. Comput Methods Programs Biomed 2018 Jan;153:137-159. [doi:
10.1016/j.cmpb.2017.10.008] [Medline: 29157447]

20. Kristoffersson A, Lindén M. A systematic review on the use of wearable body sensors for health monitoring: a qualitative
synthesis. Sensors (Basel) 2020 Mar 09;20(5):1502 [FREE Full text] [doi: 10.3390/s20051502] [Medline: 32182907]

21. Goldsack JC, Coravos A, Bakker JP, Bent B, Dowling AV, Fitzer-Attas C, et al. Verification, analytical validation, and
clinical validation (V3): the foundation of determining fit-for-purpose for Biometric Monitoring Technologies (BioMeTs).
NPJ Digit Med 2020 Apr 14;3:55 [FREE Full text] [doi: 10.1038/s41746-020-0260-4] [Medline: 32337371]

22. Manta C, Mahadevan N, Bakker J, Ozen Irmak S, Izmailova E, Park S, et al. EVIDENCE publication checklist for studies
evaluating connected sensor technologies: explanation and elaboration. Digit Biomark 2021 May 18;5(2):127-147 [FREE
Full text] [doi: 10.1159/000515835] [Medline: 34179682]

23. Higgins JP, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, et al. Cochrane Handbook for Systematic Reviews of
Interventions. Version 6.1. London, UK: Cochrane Collaboration; 2020.

24. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated
guideline for reporting systematic reviews. BMJ 2021 Mar 29;372:n71 [FREE Full text] [doi: 10.1136/bmj.n71] [Medline:
33782057]

25. Boukhvalova AK, Kowalczyk E, Harris T, Kosa P, Wichman A, Sandford MA, et al. Identifying and quantifying neurological
disability via smartphone. Front Neurol 2018 Sep 4;9:740 [FREE Full text] [doi: 10.3389/fneur.2018.00740] [Medline:
30233487]

26. Montalban X, Mulero P, Midaglia L, Graves J, Hauser SL, Julian L, et al. FLOODLIGHT: smartphone-based self-monitoring
is accepted by patients and provides meaningful, continuous digital outcomes augmenting conventional in-clinic multiple
sclerosis measures (P3.2-024). Neurology 2019 May 7;92(15 Supplement):P3.2-P024.

27. Abrami A, Heisig S, Ramos V, Thomas KC, Ho BK, Caggiano V. Using an unbiased symbolic movement representation
to characterize Parkinson's disease states. Sci Rep 2020 Apr 30;10(1):7377 [FREE Full text] [doi:
10.1038/s41598-020-64181-3] [Medline: 32355166]

28. Adams RJ, Lichter MD, Krepkovich ET, Ellington A, White M, Diamond PT. Assessing upper extremity motor function
in practice of virtual activities of daily living. IEEE Trans Neural Syst Rehabil Eng 2015 Mar;23(2):287-296 [FREE Full
text] [doi: 10.1109/TNSRE.2014.2360149] [Medline: 25265612]

29. Alberts JL, Hirsch JR, Koop MM, Schindler DD, Kana DE, Linder SM, et al. Using accelerometer and gyroscopic measures
to quantify postural stability. J Athl Train 2015 Jun;50(6):578-588 [FREE Full text] [doi: 10.4085/1062-6050-50.2.01]
[Medline: 25844853]

30. Brooks C, Shaafi Kabiri N, Mortazavi F, Auerbach S, Bonato P, Erb MK, et al. Variations in rest-activity rhythm are
associated with clinically measured disease severity in Parkinson's disease. Chronobiol Int 2020 May;37(5):699-711. [doi:
10.1080/07420528.2020.1715998] [Medline: 31959001]

31. Christiansen C, Moore C, Schenkman M, Kluger B, Kohrt W, Delitto A, et al. Factors associated with ambulatory activity
in de novo Parkinson disease. J Neurol Phys Ther 2017 Apr;41(2):93-100 [FREE Full text] [doi:
10.1097/NPT.0000000000000169] [Medline: 28263256]

32. Dehbandi B, Barachant A, Harary D, Long JD, Tsagaris KZ, Bumanlag SJ, et al. Using data from the Microsoft Kinect 2
to quantify upper limb behavior: a feasibility study. IEEE J Biomed Health Inform 2017 Sep;21(5):1386-1392. [doi:
10.1109/JBHI.2016.2606240] [Medline: 28113385]

33. Dowling A, Brys M, Paskavitz J, Auclair V, McLaren D, Postuma R, et al. Quantitative assessment of appendicular
bradykinesia in Parkinson's disease using wearable sensors. Mov Disord 2018;33(Supplement 2):S522.

34. Hssayeni MD, Burack MA, Jimenez-Shahed J, Ghoraani B. Assessment of response to medication in individuals with
Parkinson's disease. Med Eng Phys 2019 May;67:33-43. [doi: 10.1016/j.medengphy.2019.03.002] [Medline: 30876817]

J Med Internet Res 2022 | vol. 24 | iss. 11 | e37683 | p. 16https://www.jmir.org/2022/11/e37683
(page number not for citation purposes)

Guo et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

https://www.mdpi.com/resolver?pii=s16010018
http://dx.doi.org/10.3390/s16010018
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26712760&dopt=Abstract
https://europepmc.org/abstract/MED/30499058
http://dx.doi.org/10.1186/s40798-018-0167-7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30499058&dopt=Abstract
http://dx.doi.org/10.1007/s10916-019-1365-7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31203472&dopt=Abstract
http://dx.doi.org/10.1007/s11036-016-0745-1
http://dx.doi.org/10.3390/app10010234
https://www.mdpi.com/resolver?pii=s101211556
http://dx.doi.org/10.3390/s101211556
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22163542&dopt=Abstract
http://dx.doi.org/10.1016/j.cmpb.2017.10.008
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29157447&dopt=Abstract
https://www.mdpi.com/resolver?pii=s20051502
http://dx.doi.org/10.3390/s20051502
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32182907&dopt=Abstract
https://doi.org/10.1038/s41746-020-0260-4
http://dx.doi.org/10.1038/s41746-020-0260-4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32337371&dopt=Abstract
https://www.karger.com?DOI=10.1159/000515835
https://www.karger.com?DOI=10.1159/000515835
http://dx.doi.org/10.1159/000515835
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34179682&dopt=Abstract
http://www.bmj.com/lookup/pmidlookup?view=long&pmid=33782057
http://dx.doi.org/10.1136/bmj.n71
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33782057&dopt=Abstract
https://doi.org/10.3389/fneur.2018.00740
http://dx.doi.org/10.3389/fneur.2018.00740
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30233487&dopt=Abstract
https://doi.org/10.1038/s41598-020-64181-3
http://dx.doi.org/10.1038/s41598-020-64181-3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32355166&dopt=Abstract
https://europepmc.org/abstract/MED/25265612
https://europepmc.org/abstract/MED/25265612
http://dx.doi.org/10.1109/TNSRE.2014.2360149
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25265612&dopt=Abstract
https://meridian.allenpress.com/jat/article-lookup/doi/10.4085/1062-6050-50.2.01
http://dx.doi.org/10.4085/1062-6050-50.2.01
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25844853&dopt=Abstract
http://dx.doi.org/10.1080/07420528.2020.1715998
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31959001&dopt=Abstract
https://europepmc.org/abstract/MED/28263256
http://dx.doi.org/10.1097/NPT.0000000000000169
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28263256&dopt=Abstract
http://dx.doi.org/10.1109/JBHI.2016.2606240
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28113385&dopt=Abstract
http://dx.doi.org/10.1016/j.medengphy.2019.03.002
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30876817&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


35. Hughes CM, Baye M, Gordon-Murer C, Louie A, Sun S, Belay GJ, et al. Quantitative assessment of upper limb motor
function in Ethiopian acquired brain injured patients using a low-cost wearable sensor. Front Neurol 2019 Dec 12;10:1323
[FREE Full text] [doi: 10.3389/fneur.2019.01323] [Medline: 31920943]

36. Levy IG, Yadav V, Abbas A, Koesmahargyo V, Kalali A. Digital markers of motor activity captured over smartphone is
associated with negative symptoms of schizophrenia: results from a pilot observational study. Neuropsychopharmacology
2019 Dec 1;44(Suppl 1):348-349.

37. Ma M, Proffitt R, Skubic M. Validation of a Kinect V2 based rehabilitation game. PLoS One 2018 Aug 24;13(8):e0202338
[FREE Full text] [doi: 10.1371/journal.pone.0202338] [Medline: 30142631]

38. Mitsi G, Mendoza EU, Wissel BD, Barbopoulou E, Dwivedi AK, Tsoulos I, et al. Biometric digital health technology for
measuring motor function in Parkinson's disease: results from a feasibility and patient satisfaction study. Front Neurol 2017
Jun 13;8:273 [FREE Full text] [doi: 10.3389/fneur.2017.00273] [Medline: 28659858]

39. Ozinga SJ, Linder SM, Alberts JL. Use of mobile device accelerometry to enhance evaluation of postural instability in
Parkinson disease. Arch Phys Med Rehabil 2017 Apr;98(4):649-658 [FREE Full text] [doi: 10.1016/j.apmr.2016.08.479]
[Medline: 27670925]

40. Pradhan S, Kelly VE. Quantifying physical activity in early Parkinson disease using a commercial activity monitor.
Parkinsonism Relat Disord 2019 Sep;66:171-175 [FREE Full text] [doi: 10.1016/j.parkreldis.2019.08.001] [Medline:
31420310]

41. Taylor-Piliae RE, Mohler MJ, Najafi B, Coull BM. Objective fall risk detection in stroke survivors using wearable sensor
technology: a feasibility study. Top Stroke Rehabil 2016 Dec;23(6):393-399. [doi: 10.1179/1074935715Z.00000000059]
[Medline: 26382725]

42. Arora S, Baig F, Lo C, Barber TR, Lawton MA, Zhan A, et al. Smartphone motor testing to distinguish idiopathic REM
sleep behavior disorder, controls, and PD. Neurology 2018 Oct 16;91(16):e1528-e1538 [FREE Full text] [doi:
10.1212/WNL.0000000000006366] [Medline: 30232246]

43. Bennasar M, Hicks YA, Clinch SP, Jones P, Holt C, Rosser A, et al. Automated assessment of movement impairment in
Huntington's disease. IEEE Trans Neural Syst Rehabil Eng 2018 Oct;26(10):2062-2069 [FREE Full text] [doi:
10.1109/TNSRE.2018.2868170] [Medline: 30334742]

44. Coates L, Shi J, Rochester L, Del Din S, Pantall A. Entropy of real-world gait in Parkinson's disease determined from
wearable sensors as a digital marker of altered ambulatory behavior. Sensors (Basel) 2020 May 05;20(9):2631 [FREE Full
text] [doi: 10.3390/s20092631] [Medline: 32380692]

45. Del Din S, Barber T, Lo C, Rolinski M, Baig F, Ju M, et al. Free-living gait in REM sleep behaviour disorder: measures
of prodromal Parkinson's disease? Mov Disord 2018;33(Supplement 2):S524-S525.

46. Del Din S, Elshehabi M, Galna B, Hansen C, Hobert M, Suenkel U, et al. Instrumented gait analysis identifies potential
predictors for Parkinson's disease converters. Mov Disord 2018;33(Supplement 2):S505.

47. Hasan H, Burrows M, Athauda DS, Hellman B, James B, Warner T, et al. The BRadykinesia Akinesia INcoordination
(BRAIN) tap test: capturing the sequence effect. Mov Disord Clin Pract 2019 Jun 25;6(6):462-469 [FREE Full text] [doi:
10.1002/mdc3.12798] [Medline: 31392247]

48. Kassavetis P, Saifee TA, Roussos G, Drougkas L, Kojovic M, Rothwell JC, et al. Developing a tool for remote digital
assessment of Parkinson's disease. Mov Disord Clin Pract 2015 Oct 20;3(1):59-64 [FREE Full text] [doi:
10.1002/mdc3.12239] [Medline: 30363542]

49. Lo C, Arora S, Baig F, Lawton MA, El Mouden C, Barber TR, et al. Predicting motor, cognitive and functional impairment
in Parkinson's. Ann Clin Transl Neurol 2019 Aug;6(8):1498-1509 [FREE Full text] [doi: 10.1002/acn3.50853] [Medline:
31402628]

50. Pantall A, Del Din S, Rochester L. Longitudinal changes over thirty-six months in postural control dynamics and cognitive
function in people with Parkinson's disease. Gait Posture 2018 May;62:468-474. [doi: 10.1016/j.gaitpost.2018.04.016]
[Medline: 29674286]

51. Pantall A, Suresparan P, Kapa L, Morris R, Yarnall A, Del Din S, et al. Postural dynamics are associated with cognitive
decline in Parkinson's disease. Front Neurol 2018 Dec 5;9:1044 [FREE Full text] [doi: 10.3389/fneur.2018.01044] [Medline:
30568629]

52. Prince J, Arora S, de Vos M. Big data in Parkinson's disease: using smartphones to remotely detect longitudinal disease
phenotypes. Physiol Meas 2018 Apr 26;39(4):044005. [doi: 10.1088/1361-6579/aab512] [Medline: 29516871]

53. van Wamelen DJ, Hota S, Podlewska A, Leta V, Trivedi D, Rizos A, et al. Non-motor correlates of wrist-worn wearable
sensor use in Parkinson's disease: an exploratory analysis. NPJ Parkinsons Dis 2019 Oct 2;5:22 [FREE Full text] [doi:
10.1038/s41531-019-0094-4] [Medline: 31602393]

54. Capecci M, Pepa L, Verdini F, Ceravolo MG. A smartphone-based architecture to detect and quantify freezing of gait in
Parkinson's disease. Gait Posture 2016 Oct;50:28-33. [doi: 10.1016/j.gaitpost.2016.08.018] [Medline: 27567449]

55. Cavallo F, Moschetti A, Esposito D, Maremmani C, Rovini E. Upper limb motor pre-clinical assessment in Parkinson's
disease using machine learning. Parkinsonism Relat Disord 2019 Jun;63:111-116 [FREE Full text] [doi:
10.1016/j.parkreldis.2019.02.028] [Medline: 30826265]

J Med Internet Res 2022 | vol. 24 | iss. 11 | e37683 | p. 17https://www.jmir.org/2022/11/e37683
(page number not for citation purposes)

Guo et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

https://doi.org/10.3389/fneur.2019.01323
http://dx.doi.org/10.3389/fneur.2019.01323
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31920943&dopt=Abstract
https://dx.plos.org/10.1371/journal.pone.0202338
http://dx.doi.org/10.1371/journal.pone.0202338
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30142631&dopt=Abstract
https://doi.org/10.3389/fneur.2017.00273
http://dx.doi.org/10.3389/fneur.2017.00273
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28659858&dopt=Abstract
https://europepmc.org/abstract/MED/27670925
http://dx.doi.org/10.1016/j.apmr.2016.08.479
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27670925&dopt=Abstract
https://europepmc.org/abstract/MED/31420310
http://dx.doi.org/10.1016/j.parkreldis.2019.08.001
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31420310&dopt=Abstract
http://dx.doi.org/10.1179/1074935715Z.00000000059
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26382725&dopt=Abstract
https://europepmc.org/abstract/MED/30232246
http://dx.doi.org/10.1212/WNL.0000000000006366
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30232246&dopt=Abstract
https://europepmc.org/abstract/MED/30334742
http://dx.doi.org/10.1109/TNSRE.2018.2868170
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30334742&dopt=Abstract
https://www.mdpi.com/resolver?pii=s20092631
https://www.mdpi.com/resolver?pii=s20092631
http://dx.doi.org/10.3390/s20092631
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32380692&dopt=Abstract
https://doi.org/10.1002/mdc3.12798
http://dx.doi.org/10.1002/mdc3.12798
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31392247&dopt=Abstract
https://doi.org/10.1002/mdc3.12239
http://dx.doi.org/10.1002/mdc3.12239
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30363542&dopt=Abstract
https://doi.org/10.1002/acn3.50853
http://dx.doi.org/10.1002/acn3.50853
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31402628&dopt=Abstract
http://dx.doi.org/10.1016/j.gaitpost.2018.04.016
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29674286&dopt=Abstract
https://doi.org/10.3389/fneur.2018.01044
http://dx.doi.org/10.3389/fneur.2018.01044
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30568629&dopt=Abstract
http://dx.doi.org/10.1088/1361-6579/aab512
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29516871&dopt=Abstract
https://doi.org/10.1038/s41531-019-0094-4
http://dx.doi.org/10.1038/s41531-019-0094-4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31602393&dopt=Abstract
http://dx.doi.org/10.1016/j.gaitpost.2016.08.018
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27567449&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S1353-8020(19)30074-4
http://dx.doi.org/10.1016/j.parkreldis.2019.02.028
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30826265&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


56. Lopane G, Mellone S, Chiari L, Cortelli P, Calandra-Buonaura G, Contin M. Dyskinesia detection and monitoring by a
single sensor in patients with Parkinson's disease. Mov Disord 2015 Aug;30(9):1267-1271. [doi: 10.1002/mds.26313]
[Medline: 26179817]

57. Scano A, Chiavenna A, Malosio M, Molinari Tosatti L, Molteni F. Kinect V2 implementation and testing of the reaching
performance scale for motor evaluation of patients with neurological impairment. Med Eng Phys 2018 Jun;56:54-58. [doi:
10.1016/j.medengphy.2018.04.005] [Medline: 29681441]

58. Vianello A, Chittaro L, Burigat S, Budai R. MotorBrain: a mobile app for the assessment of users' motor performance in
neurology. Comput Methods Programs Biomed 2017 May;143:35-47. [doi: 10.1016/j.cmpb.2017.02.012] [Medline:
28391817]

59. Arroyo-Gallego T, Ledesma-Carbayo MJ, Butterworth I, Matarazzo M, Montero-Escribano P, Puertas-Martín V, et al.
Detecting motor impairment in early Parkinson's disease via natural typing interaction with keyboards: validation of the
neuroQWERTY approach in an uncontrolled at-home setting. J Med Internet Res 2018 Mar 26;20(3):e89 [FREE Full text]
[doi: 10.2196/jmir.9462] [Medline: 29581092]

60. Pérez-López C, Samà A, Rodríguez-Martín D, Català A, Cabestany J, Moreno-Arostegui J, et al. Assessing motor fluctuations
in Parkinson's disease patients based on a single inertial sensor. Sensors (Basel) 2016 Dec 15;16(12):2132 [FREE Full text]
[doi: 10.3390/s16122132] [Medline: 27983675]

61. Rodríguez-Martín D, Pérez-López C, Samà A, Català A, Moreno Arostegui JM, Cabestany J, et al. A waist-worn inertial
measurement unit for long-term monitoring of Parkinson's disease patients. Sensors (Basel) 2017 Apr 11;17(4):827 [FREE
Full text] [doi: 10.3390/s17040827] [Medline: 28398265]

62. Rodríguez-Molinero A, Samà A, Pérez-Martínez DA, Pérez López C, Romagosa J, Bayés À, et al. Validation of a portable
device for mapping motor and gait disturbances in Parkinson's disease. JMIR Mhealth Uhealth 2015 Feb 02;3(1):e9 [FREE
Full text] [doi: 10.2196/mhealth.3321] [Medline: 25648406]

63. Chae SH, Kim Y, Lee KS, Park HS. Development and clinical evaluation of a web-based upper limb home rehabilitation
system using a smartwatch and machine learning model for chronic stroke survivors: prospective comparative study. JMIR
Mhealth Uhealth 2020 Jul 09;8(7):e17216 [FREE Full text] [doi: 10.2196/17216] [Medline: 32480361]

64. Kim HB, Lee HJ, Lee WW, Kim SK, Jeon HS, Park HY, et al. Validation of freezing-of-gait monitoring using smartphone.
Telemed J E Health 2018 Nov;24(11):899-907. [doi: 10.1089/tmj.2017.0215] [Medline: 29708870]

65. Lee J, Park S, Shin H. Detection of hemiplegic walking using a wearable inertia sensing device. Sensors (Basel) 2018 May
28;18(6):1736 [FREE Full text] [doi: 10.3390/s18061736] [Medline: 29843413]

66. Seok HY, Kim JW, Kim YH, Park MH, Kwon DY. Quantitative evaluation of hand motor function using a gyrosensor in
mild and moderate carpal tunnel syndrome. Muscle Nerve 2019 Apr;59(4):465-469. [doi: 10.1002/mus.26424] [Medline:
30677150]

67. Louter M, Maetzler W, Prinzen J, van Lummel RC, Hobert M, Arends JB, et al. Accelerometer-based quantitative analysis
of axial nocturnal movements differentiates patients with Parkinson's disease, but not high-risk individuals, from controls.
J Neurol Neurosurg Psychiatry 2015 Jan;86(1):32-37. [doi: 10.1136/jnnp-2013-306851] [Medline: 24777169]

68. Ossig C, Gandor F, Fauser M, Bosredon C, Churilov L, Reichmann H, et al. Correlation of quantitative motor state assessment
using a kinetograph and patient diaries in advanced PD: data from an observational study. PLoS One 2016 Aug
24;11(8):e0161559 [FREE Full text] [doi: 10.1371/journal.pone.0161559] [Medline: 27556806]

69. Otte K, Kayser B, Mansow-Model S, Verrel J, Paul F, Brandt AU, et al. Accuracy and reliability of the Kinect Version 2
for clinical measurement of motor function. PLoS One 2016 Nov 18;11(11):e0166532 [FREE Full text] [doi:
10.1371/journal.pone.0166532] [Medline: 27861541]

70. Horigome T, Sumali B, Kitazawa M, Yoshimura M, Liang KC, Tazawa Y, et al. Evaluating the severity of depressive
symptoms using upper body motion captured by RGB-depth sensors and machine learning in a clinical interview setting:
a preliminary study. Compr Psychiatry 2020 Feb 20;98:152169 [FREE Full text] [doi: 10.1016/j.comppsych.2020.152169]
[Medline: 32145559]

71. Terashi H, Taguchi T, Ueta Y, Okubo Y, Mitoma H, Aizawa H. Analysis of non-invasive gait recording under free-living
conditions in patients with Parkinson's disease: relationship with global cognitive function and motor abnormalities. BMC
Neurol 2020 Apr 29;20(1):161 [FREE Full text] [doi: 10.1186/s12883-020-01729-w] [Medline: 32349688]

72. Terui Y, Iwakura M, Suto E, Kawagoshi A, Sugawara K, Takahashi H, et al. New evaluation of trunk movement and balance
during walking in COPD patients by a triaxial accelerometer. Int J Chron Obstruct Pulmon Dis 2018 Dec 7;13:3957-3962
[FREE Full text] [doi: 10.2147/COPD.S184212] [Medline: 30584295]

73. Beange KH, Chan AD, Beaudette SM, Graham RB. Concurrent validity of a wearable IMU for objective assessments of
functional movement quality and control of the lumbar spine. J Biomech 2019 Dec 03;97:109356. [doi:
10.1016/j.jbiomech.2019.109356] [Medline: 31668717]

74. Campos C, DePaul VG, Knorr S, Wong JS, Mansfield A, Patterson KK. Validity of the ActiGraph activity monitor for
individuals who walk slowly post-stroke. Top Stroke Rehabil 2018 May;25(4):295-304. [doi:
10.1080/10749357.2018.1446487] [Medline: 29557275]

J Med Internet Res 2022 | vol. 24 | iss. 11 | e37683 | p. 18https://www.jmir.org/2022/11/e37683
(page number not for citation purposes)

Guo et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://dx.doi.org/10.1002/mds.26313
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26179817&dopt=Abstract
http://dx.doi.org/10.1016/j.medengphy.2018.04.005
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29681441&dopt=Abstract
http://dx.doi.org/10.1016/j.cmpb.2017.02.012
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28391817&dopt=Abstract
https://www.jmir.org/2018/3/e89/
http://dx.doi.org/10.2196/jmir.9462
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29581092&dopt=Abstract
https://www.mdpi.com/resolver?pii=s16122132
http://dx.doi.org/10.3390/s16122132
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27983675&dopt=Abstract
https://www.mdpi.com/resolver?pii=s17040827
https://www.mdpi.com/resolver?pii=s17040827
http://dx.doi.org/10.3390/s17040827
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28398265&dopt=Abstract
https://mhealth.jmir.org/2015/1/e9/
https://mhealth.jmir.org/2015/1/e9/
http://dx.doi.org/10.2196/mhealth.3321
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25648406&dopt=Abstract
https://mhealth.jmir.org/2020/7/e17216/
http://dx.doi.org/10.2196/17216
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32480361&dopt=Abstract
http://dx.doi.org/10.1089/tmj.2017.0215
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29708870&dopt=Abstract
https://www.mdpi.com/resolver?pii=s18061736
http://dx.doi.org/10.3390/s18061736
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29843413&dopt=Abstract
http://dx.doi.org/10.1002/mus.26424
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30677150&dopt=Abstract
http://dx.doi.org/10.1136/jnnp-2013-306851
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24777169&dopt=Abstract
https://dx.plos.org/10.1371/journal.pone.0161559
http://dx.doi.org/10.1371/journal.pone.0161559
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27556806&dopt=Abstract
https://dx.plos.org/10.1371/journal.pone.0166532
http://dx.doi.org/10.1371/journal.pone.0166532
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27861541&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S0010-440X(20)30011-0
http://dx.doi.org/10.1016/j.comppsych.2020.152169
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32145559&dopt=Abstract
https://bmcneurol.biomedcentral.com/articles/10.1186/s12883-020-01729-w
http://dx.doi.org/10.1186/s12883-020-01729-w
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32349688&dopt=Abstract
https://dx.doi.org/10.2147/COPD.S184212
http://dx.doi.org/10.2147/COPD.S184212
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30584295&dopt=Abstract
http://dx.doi.org/10.1016/j.jbiomech.2019.109356
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31668717&dopt=Abstract
http://dx.doi.org/10.1080/10749357.2018.1446487
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29557275&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


75. Evers LJ, Raykov YP, Krijthe JH, Silva de Lima AL, Badawy R, Claes K, et al. Real-life gait performance as a digital
biomarker for motor fluctuations: the Parkinson@home validation study. J Med Internet Res 2020 Oct 09;22(10):e19068
[FREE Full text] [doi: 10.2196/19068] [Medline: 33034562]

76. Zach H, Dirkx M, Pasman JW, Bloem BR, Helmich RC. The patient's perspective: the effect of levodopa on Parkinson
symptoms. Parkinsonism Relat Disord 2017 Feb;35:48-54. [doi: 10.1016/j.parkreldis.2016.11.015] [Medline: 27919585]

77. do Carmo Vilas-Boas M, Choupina HM, Rocha AP, Fernandes JM, Cunha JP. Full-body motion assessment: concurrent
validation of two body tracking depth sensors versus a gold standard system during gait. J Biomech 2019 Apr 18;87:189-196.
[doi: 10.1016/j.jbiomech.2019.03.008] [Medline: 30914189]

78. do Carmo Vilas-Boas M, Rocha AP, Choupina HM, Cardoso MN, Fernandes JM, Coelho T, et al. Validation of a single
RGB-D camera for gait assessment of polyneuropathy patients. Sensors (Basel) 2019 Nov 12;19(22):4929 [FREE Full text]
[doi: 10.3390/s19224929] [Medline: 31726742]

79. Aghanavesi S, Westin J, Bergquist F, Nyholm D, Askmark H, Aquilonius SM, et al. A multiple motion sensors index for
motor state quantification in Parkinson's disease. Comput Methods Programs Biomed 2020 Jun;189:105309. [doi:
10.1016/j.cmpb.2019.105309] [Medline: 31982667]

80. Aghanavesi S, Bergquist F, Nyholm D, Senek M, Memedi M. Motion sensor-based assessment of Parkinson's disease motor
symptoms during leg agility tests: results from levodopa challenge. IEEE J Biomed Health Inform 2020 Jan;24(1):111-119.
[doi: 10.1109/JBHI.2019.2898332] [Medline: 30763248]

81. Hsu CY, Tsai YS, Yau CS, Shie HH, Wu CM. Gait and trunk movement characteristics of chronic ischemic stroke patients.
Int J Gerontol 2019;13(2):144-148.

82. Huang YP, Singh A, Chen S, Sun FJ, Huang CR, Liu SI. Validity of a novel touch screen tablet-based assessment for mild
cognitive impairment and probable AD in older adults. Assessment 2019 Dec;26(8):1540-1553. [doi:
10.1177/1073191117748395] [Medline: 29251514]

83. Lee W, Evans A, Williams DR. Validation of a smartphone application measuring motor function in Parkinson's disease.
J Parkinsons Dis 2016 Apr 02;6(2):371-382. [doi: 10.3233/JPD-150708] [Medline: 27061062]

84. de Paula JN, de Mello Monteiro CB, da Silva TD, Capelini CM, de Menezes LD, Massetti T, et al. Motor performance of
individuals with cerebral palsy in a virtual game using a mobile phone. Disabil Rehabil Assist Technol 2018
Aug;13(6):609-613. [doi: 10.1080/17483107.2017.1392620] [Medline: 29092683]

85. Simonsen D, Nielsen IF, Spaich EG, Andersen OK. Design and test of an automated version of the modified Jebsen test
of hand function using Microsoft Kinect. J Neuroeng Rehabil 2017 May 02;14(1):38 [FREE Full text] [doi:
10.1186/s12984-017-0250-1] [Medline: 28464927]

86. Lepetit K, Ben Mansour K, Boudaoud S, Kinugawa-Bourron K, Marin F. Evaluation of the kinetic energy of the torso by
magneto-inertial measurement unit during the sit-to-stand movement. J Biomech 2018 Jan 23;67:172-176. [doi:
10.1016/j.jbiomech.2017.11.028] [Medline: 29269002]

87. Bernad-Elazari H, Herman T, Mirelman A, Gazit E, Giladi N, Hausdorff JM. Objective characterization of daily living
transitions in patients with Parkinson's disease using a single body-fixed sensor. J Neurol 2016 Aug;263(8):1544-1551.
[doi: 10.1007/s00415-016-8164-6] [Medline: 27216626]

88. Iakovakis D, Hadjidimitriou S, Charisis V, Bostantzopoulou S, Katsarou Z, Hadjileontiadis LJ. Touchscreen typing-pattern
analysis for detecting fine motor skills decline in early-stage Parkinson's disease. Sci Rep 2018 May 16;8(1):7663 [FREE
Full text] [doi: 10.1038/s41598-018-25999-0] [Medline: 29769594]

89. Iakovakis D, Diniz JA, Trivedi D, Chaudhuri RK, Hadjileontiadis LJ, Hadjidimitriou S, et al. Early Parkinson's disease
detection via touchscreen typing analysis using convolutional neural networks. Annu Int Conf IEEE Eng Med Biol Soc
2019 Jul;2019:3535-3538. [doi: 10.1109/EMBC.2019.8857211] [Medline: 31946641]

90. Lauraitis A, Maskeliūnas R, Damaševičius R, Krilavičius T. A mobile application for smart computer-aided self-administered
testing of cognition, speech, and motor impairment. Sensors (Basel) 2020 Jun 06;20(11):3236 [FREE Full text] [doi:
10.3390/s20113236] [Medline: 32517223]

91. Hiorth YH, Larsen JP, Lode K, Tysnes OB, Godfrey A, Lord S, et al. Impact of falls on physical activity in people with
Parkinson's disease. J Parkinsons Dis 2016;6(1):175-182. [doi: 10.3233/JPD-150640] [Medline: 26639446]

92. Mastoras RE, Iakovakis D, Hadjidimitriou S, Charisis V, Kassie S, Alsaadi T, et al. Touchscreen typing pattern analysis
for remote detection of the depressive tendency. Sci Rep 2019 Sep 16;9(1):13414 [FREE Full text] [doi:
10.1038/s41598-019-50002-9] [Medline: 31527640]

93. Ahlrichs C, Samà A, Lawo M, Cabestany J, Rodríguez-Martín D, Pérez-López C, et al. Detecting freezing of gait with a
tri-axial accelerometer in Parkinson's disease patients. Med Biol Eng Comput 2016 Jan;54(1):223-233. [doi:
10.1007/s11517-015-1395-3] [Medline: 26429349]

94. Klingelhoefer L, Bostanjopoulou S, Trivedi D, Hadjidimitriou S, Mayer S, Katsarou Z, et al. Medical evaluation as gold
standard to control iPrognosis application derived data for early Parkinson’s disease detection. Mov Disord
2019;34(Supplement 2):S913-S914.

95. Lalvay L, Lara M, Mora A, Alarcón F, Fraga M, Pancorbo J, et al. Quantitative measurement of akinesia in Parkinson's
disease. Mov Disord Clin Pract 2016 Aug 3;4(3):316-322 [FREE Full text] [doi: 10.1002/mdc3.12410] [Medline: 30363442]

J Med Internet Res 2022 | vol. 24 | iss. 11 | e37683 | p. 19https://www.jmir.org/2022/11/e37683
(page number not for citation purposes)

Guo et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

https://www.jmir.org/2020/10/e19068/
http://dx.doi.org/10.2196/19068
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33034562&dopt=Abstract
http://dx.doi.org/10.1016/j.parkreldis.2016.11.015
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27919585&dopt=Abstract
http://dx.doi.org/10.1016/j.jbiomech.2019.03.008
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30914189&dopt=Abstract
https://www.mdpi.com/resolver?pii=s19224929
http://dx.doi.org/10.3390/s19224929
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31726742&dopt=Abstract
http://dx.doi.org/10.1016/j.cmpb.2019.105309
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31982667&dopt=Abstract
http://dx.doi.org/10.1109/JBHI.2019.2898332
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30763248&dopt=Abstract
http://dx.doi.org/10.1177/1073191117748395
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29251514&dopt=Abstract
http://dx.doi.org/10.3233/JPD-150708
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27061062&dopt=Abstract
http://dx.doi.org/10.1080/17483107.2017.1392620
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29092683&dopt=Abstract
https://jneuroengrehab.biomedcentral.com/articles/10.1186/s12984-017-0250-1
http://dx.doi.org/10.1186/s12984-017-0250-1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28464927&dopt=Abstract
http://dx.doi.org/10.1016/j.jbiomech.2017.11.028
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29269002&dopt=Abstract
http://dx.doi.org/10.1007/s00415-016-8164-6
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27216626&dopt=Abstract
https://doi.org/10.1038/s41598-018-25999-0
https://doi.org/10.1038/s41598-018-25999-0
http://dx.doi.org/10.1038/s41598-018-25999-0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29769594&dopt=Abstract
http://dx.doi.org/10.1109/EMBC.2019.8857211
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31946641&dopt=Abstract
https://www.mdpi.com/resolver?pii=s20113236
http://dx.doi.org/10.3390/s20113236
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32517223&dopt=Abstract
http://dx.doi.org/10.3233/JPD-150640
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26639446&dopt=Abstract
https://doi.org/10.1038/s41598-019-50002-9
http://dx.doi.org/10.1038/s41598-019-50002-9
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31527640&dopt=Abstract
http://dx.doi.org/10.1007/s11517-015-1395-3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26429349&dopt=Abstract
https://doi.org/10.1002/mdc3.12410
http://dx.doi.org/10.1002/mdc3.12410
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30363442&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


96. Lipsmeier F, Simillion C, Bamdadian A, Smith A, Schobel S, Czech C, et al. Preliminary reliability and validity of a novel
digital biomarker smartphone application to assess cognitive and motor symptoms in Huntington's disease (HD) (P1.8-042).
Neurology 2019 Apr;92(15 Supplement):P1.8-P042.

97. Lipsmeier F, Taylor KI, Postuma RB. Preliminary validation smartphone application to assess motor symptoms in recently
diagnosed parkinson patients. Neurology 2019 May 8;92(15 Supplement):P4.7-005.

98. Rodríguez-Molinero A, Samà A, Pérez-López C, Rodríguez-Martín D, Quinlan LR, Alcaine S, et al. Analysis of correlation
between an accelerometer-based algorithm for detecting Parkinsonian gait and UPDRS subscales. Front Neurol 2017 Sep
1;8:431 [FREE Full text] [doi: 10.3389/fneur.2017.00431] [Medline: 28919877]

99. Andrzejewski KL, Dowling AV, Stamler D, Felong TJ, Harris DA, Wong C, et al. Wearable sensors in Huntington disease:
a pilot study. J Huntingtons Dis 2016 Jun 18;5(2):199-206. [doi: 10.3233/JHD-160197] [Medline: 27341134]

100. Horne MK, McGregor S, Bergquist F. An objective fluctuation score for Parkinson's disease. PLoS One 2015 Apr
30;10(4):e0124522 [FREE Full text] [doi: 10.1371/journal.pone.0124522] [Medline: 25928634]

101. Wissel BD, Mitsi G, Dwivedi AK, Papapetropoulos S, Larkin S, López Castellanos JR, et al. Tablet-based application for
objective measurement of motor fluctuations in Parkinson disease. Digit Biomark 2018 Jan 9;1(2):126-135 [FREE Full
text] [doi: 10.1159/000485468] [Medline: 32095754]

102. Shaafi Kabiri N, Best A, Johnson S, Ho B, Eden G, Dupee B, et al. Utility of a smartphone app in discretely assessing and
monitoring symptoms of Parkinson’s disease. Mov Disord 2019;34(Supplement 2):S298.

103. Arroyo-Gallego T, Ledesma-Carbayo MJ, Sanchez-Ferro A, Butterworth I, Mendoza CS, Matarazzo M, et al. Detection
of motor impairment in Parkinson's disease via mobile touchscreen typing. IEEE Trans Biomed Eng 2017
Sep;64(9):1994-2002. [doi: 10.1109/TBME.2017.2664802] [Medline: 28237917]

104. Lowes L, Miller N, Iammarino M, Dugan M, Alfano L. Activity monitoring in neuromuscular disease: successes, challenges,
and a path forward (P5.6-016). Neurology 2019 Apr;92(15 Supplement):P5.6-P016.

105. Zhou H. Instrumented trail-making task to identify cognitive-motor impairment and assess cognitive frailty. J Am Geriatr
Soc 2019 Apr 02;67(S1):S127-S128. [doi: 10.1111/jgs.15898]

106. Ren P, Bosch Bayard JF, Dong L, Chen J, Mao L, Ma D, et al. Multivariate analysis of joint motion data by Kinect:
application to Parkinson's disease. IEEE Trans Neural Syst Rehabil Eng 2020 Jan;28(1):181-190. [doi:
10.1109/TNSRE.2019.2953707] [Medline: 31751278]

107. Gordon MF, Grachev ID, Mazeh I, Dolan Y, Reilmann R, Loupe PS, et al. Quantification of motor function in Huntington
disease patients using wearable sensor devices. Digit Biomark 2019 Sep 6;3(3):103-115 [FREE Full text] [doi:
10.1159/000502136] [Medline: 32095771]

108. Shawen N, Knott J, Lee J, Simuni T, Daeschler D, Jayaraman A. Automatic scoring of Parkinson's disease motor symptoms
using a smartwatch (P2.8-001). Neurology 2019 Apr;92(15 Supplement):P2.8-P001.

109. Seiffert P, Kawa J, Derejczyk J, Czernek M, Stepien P, Marcisz C. Mobile test of manual dexterity in the diagnostics of
frailty in older patients with mild parkinsonian signs. Eur Geriatr Med 2019;10(Supplement 1):S258. [doi:
10.1007/s41999-019-00221-0]

110. Lee CY, Kang SJ, Hong SK, Ma HI, Lee U, Kim YJ. A validation study of a smartphone-based finger tapping application
for quantitative assessment of bradykinesia in Parkinson's disease. PLoS One 2016 Jul 28;11(7):e0158852 [FREE Full text]
[doi: 10.1371/journal.pone.0158852] [Medline: 27467066]

111. Kim H, Lee HJ, Lee W, Kwon S, Kim SK, Jeon HS, et al. Unconstrained detection of freezing of Gait in Parkinson's disease
patients using smartphone. Annu Int Conf IEEE Eng Med Biol Soc 2015 Aug;2015:3751-3754. [doi:
10.1109/EMBC.2015.7319209] [Medline: 26737109]

112. Sigcha L, Costa N, Pavón I, Costa S, Arezes P, López JM, et al. Deep learning approaches for detecting freezing of gait in
Parkinson's disease patients through on-body acceleration sensors. Sensors (Basel) 2020 Mar 29;20(7):1895 [FREE Full
text] [doi: 10.3390/s20071895] [Medline: 32235373]

113. Bonnechère B, Jansen B, Haack I, Omelina L, Feipel V, Van Sint Jan S, et al. Automated functional upper limb evaluation
of patients with Friedreich ataxia using serious games rehabilitation exercises. J Neuroeng Rehabil 2018 Oct 04;15(1):87
[FREE Full text] [doi: 10.1186/s12984-018-0430-7] [Medline: 30286776]

114. Hssayeni MD, Adams JL, Ghoraani B. Deep learning for medication assessment of individuals with Parkinson's disease
using wearable sensors. Annu Int Conf IEEE Eng Med Biol Soc 2018 Jul;2018:1-4. [doi: 10.1109/EMBC.2018.8513344]
[Medline: 30440318]

115. Zhan A, Mohan S, Tarolli C, Schneider RB, Adams JL, Sharma S, et al. Using smartphones and machine learning to quantify
Parkinson disease severity: the mobile Parkinson disease score. JAMA Neurol 2018 Jul 01;75(7):876-880 [FREE Full text]
[doi: 10.1001/jamaneurol.2018.0809] [Medline: 29582075]

116. ROBINS-E Development Group, Higgins J, Morgan R, Rooney A, Taylor K, Thayer K, et al. Risk Of Bias In Non-randomized
Studies - of Exposure (ROBINS-E). Launch Version. Risk Of Bias. 2022. URL: https://www.riskofbias.info/welcome/
robins-e-tool [accessed 2022-06-01]

117. Rosenthal R. Meta-Analytic Procedures for Social Research. Applied Social Research Methods Series 6. Newbury Park,
CA, USA: Sage Publications; 1991.

J Med Internet Res 2022 | vol. 24 | iss. 11 | e37683 | p. 20https://www.jmir.org/2022/11/e37683
(page number not for citation purposes)

Guo et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

https://doi.org/10.3389/fneur.2017.00431
http://dx.doi.org/10.3389/fneur.2017.00431
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28919877&dopt=Abstract
http://dx.doi.org/10.3233/JHD-160197
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27341134&dopt=Abstract
https://dx.plos.org/10.1371/journal.pone.0124522
http://dx.doi.org/10.1371/journal.pone.0124522
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25928634&dopt=Abstract
https://europepmc.org/abstract/MED/32095754
https://europepmc.org/abstract/MED/32095754
http://dx.doi.org/10.1159/000485468
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32095754&dopt=Abstract
http://dx.doi.org/10.1109/TBME.2017.2664802
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28237917&dopt=Abstract
http://dx.doi.org/10.1111/jgs.15898
http://dx.doi.org/10.1109/TNSRE.2019.2953707
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31751278&dopt=Abstract
https://europepmc.org/abstract/MED/32095771
http://dx.doi.org/10.1159/000502136
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32095771&dopt=Abstract
http://dx.doi.org/10.1007/s41999-019-00221-0
https://dx.plos.org/10.1371/journal.pone.0158852
http://dx.doi.org/10.1371/journal.pone.0158852
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27467066&dopt=Abstract
http://dx.doi.org/10.1109/EMBC.2015.7319209
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26737109&dopt=Abstract
https://www.mdpi.com/resolver?pii=s20071895
https://www.mdpi.com/resolver?pii=s20071895
http://dx.doi.org/10.3390/s20071895
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32235373&dopt=Abstract
https://jneuroengrehab.biomedcentral.com/articles/10.1186/s12984-018-0430-7
http://dx.doi.org/10.1186/s12984-018-0430-7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30286776&dopt=Abstract
http://dx.doi.org/10.1109/EMBC.2018.8513344
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30440318&dopt=Abstract
https://europepmc.org/abstract/MED/29582075
http://dx.doi.org/10.1001/jamaneurol.2018.0809
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29582075&dopt=Abstract
https://www.riskofbias.info/welcome/robins-e-tool
https://www.riskofbias.info/welcome/robins-e-tool
http://www.w3.org/Style/XSL
http://www.renderx.com/


118. Cooper H, Hedges LV, Valentine JC. The Handbook of Research Synthesis and Meta-Analysis. 3rd edition. New York,
NY, USA: Russell Sage Foundation; 2019.

119. Fisher RA. On the 'probable error' of a coefficient of correlation deduced from a small sample. The University of Adelaide.
1921. URL: https://digital.library.adelaide.edu.au/dspace/handle/2440/15169 [accessed 2021-04-09]

120. Fisher RA. Frequency distribution of the values of the correlation coefficient in samples from an indefinitely large population.
Biometrika 1915 May;10(4):507-521. [doi: 10.2307/2331838]

121. Lipsey M, Wilson D. Practical Meta-Analysis. Thousand Oaks, CA, USA: Sage Publications; 2001.
122. Alexander S, Peryer G, Gray E, Barkhof F, Chataway J. Wearable technologies to measure clinical outcomes in multiple

sclerosis: a scoping review. Mult Scler 2021 Oct;27(11):1643-1656 [FREE Full text] [doi: 10.1177/1352458520946005]
[Medline: 32749928]

123. Hosmer DW, Lemeshow S. Applied Logistic Regression. 2nd edition. Hoboken, NJ, USA: Wiley Online Library; 2000.
124. Lee EH, Lee SJ, Hwang ST, Hong SH, Kim JH. Reliability and validity of the beck depression inventory-II among Korean

adolescents. Psychiatry Investig 2017 Jan;14(1):30-36 [FREE Full text] [doi: 10.4306/pi.2017.14.1.30] [Medline: 28096872]
125. Marrie RA, Goldman M. Validity of performance scales for disability assessment in multiple sclerosis. Mult Scler 2007

Nov;13(9):1176-1182. [doi: 10.1177/1352458507078388] [Medline: 17623733]
126. Martinez-Martin P, Rodriguez-Blazquez C, Alvarez-Sanchez M, Arakaki T, Bergareche-Yarza A, Chade A, et al. Expanded

and independent validation of the Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS).
J Neurol 2013 Jan;260(1):228-236. [doi: 10.1007/s00415-012-6624-1] [Medline: 22865238]

127. Reich SG, Savitt JM. Parkinson's disease. Med Clin North Am 2019 Mar;103(2):337-350. [doi: 10.1016/j.mcna.2018.10.014]
[Medline: 30704685]

128. Visscher PM, Brown MA, McCarthy MI, Yang J. Five years of GWAS discovery. Am J Hum Genet 2012 Jan 13;90(1):7-24
[FREE Full text] [doi: 10.1016/j.ajhg.2011.11.029] [Medline: 22243964]

129. Bottou L, Peters J, Quiñonero-Candela J, Charles DX, Chickering M, Portugaly E, et al. Counterfactual reasoning and
learning systems: the example of computational advertising. J Mach Learn Res 2013;14(101):3207-3260.

130. Fiedler K. Voodoo correlations are everywhere-not only in neuroscience. Perspect Psychol Sci 2011 Mar;6(2):163-171.
[doi: 10.1177/1745691611400237] [Medline: 26162135]

131. Vul E, Harris C, Winkielman P, Pashler H. Puzzlingly high correlations in fMRI studies of emotion, personality, and social
cognition. Perspect Psychol Sci 2009 May;4(3):274-290. [doi: 10.1111/j.1745-6924.2009.01125.x] [Medline: 26158964]

132. Sculley D, Holt G, Golovin D, Davydov E, Phillips T, Ebner D, et al. Machine learning: the high-interest credit card of
technical debt. In: Proceedings of the 28th Conference on Neural Information Processing Systems. 2014 Presented at:
NeurIPS '14; December 8-13, 2014; Montreal, Canada.

133. Sculley D, Otey ME, Pohl M, Spitznagel B, Hainsworth J, Zhou Y. Detecting adversarial advertisements in the wild. In:
Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2011 Presented
at: KDD '11; August 21-24, 2011; San Diego, CA, USA p. 274-282. [doi: 10.1145/2020408.2020455]

134. Saeb S, Lonini L, Jayaraman A, Mohr DC, Kording KP. The need to approximate the use-case in clinical machine learning.
Gigascience 2017 May 01;6(5):1-9 [FREE Full text] [doi: 10.1093/gigascience/gix019] [Medline: 28327985]

135. Vul E, Pashler H. Suspiciously high correlations in brain imaging research. In: Lilienfeld SO, Waldman ID, editors.
Psychological Science Under Scrutiny: Recent Challenges and Proposed Solutions. Hoboken, NJ, USA: John Wiley &
Sons; 2017:196-220.

136. Head ML, Holman L, Lanfear R, Kahn AT, Jennions MD. The extent and consequences of p-hacking in science. PLoS
Biol 2015 Mar;13(3):e1002106 [FREE Full text] [doi: 10.1371/journal.pbio.1002106] [Medline: 25768323]

137. Ioannidis JP. What have we (not) learnt from millions of scientific papers with P values? Am Stat 2019 Mar
20;73(sup1):20-25. [doi: 10.1080/00031305.2018.1447512]

138. Mayo-Wilson E, Li T, Fusco N, Bertizzolo L, Canner JK, Cowley T, et al. Cherry-picking by trialists and meta-analysts
can drive conclusions about intervention efficacy. J Clin Epidemiol 2017 Nov;91:95-110 [FREE Full text] [doi:
10.1016/j.jclinepi.2017.07.014] [Medline: 28842290]

139. Li T, Mayo-Wilson E, Fusco N, Hong H, Dickersin K. Caveat emptor: the combined effects of multiplicity and selective
reporting. Trials 2018 Sep 17;19(1):497 [FREE Full text] [doi: 10.1186/s13063-018-2888-9] [Medline: 30223876]

140. Mayo-Wilson E, Fusco N, Li T, Hong H, Canner JK, Dickersin K, MUDS investigators. Multiple outcomes and analyses
in clinical trials create challenges for interpretation and research synthesis. J Clin Epidemiol 2017 Jun;86:39-50 [FREE
Full text] [doi: 10.1016/j.jclinepi.2017.05.007] [Medline: 28529187]

141. Dobkin BH. Wearable motion sensors to continuously measure real-world physical activities. Curr Opin Neurol 2013
Dec;26(6):602-608 [FREE Full text] [doi: 10.1097/WCO.0000000000000026] [Medline: 24136126]

Abbreviations
AUC: area under the curve
EMA: European Medicines Agency
PICO: Population, Intervention, Comparator, Outcomes

J Med Internet Res 2022 | vol. 24 | iss. 11 | e37683 | p. 21https://www.jmir.org/2022/11/e37683
(page number not for citation purposes)

Guo et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

https://digital.library.adelaide.edu.au/dspace/handle/2440/15169
http://dx.doi.org/10.2307/2331838
https://journals.sagepub.com/doi/abs/10.1177/1352458520946005?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%3dpubmed
http://dx.doi.org/10.1177/1352458520946005
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32749928&dopt=Abstract
http://psychiatryinvestigation.org/journal/view.php?doi=10.4306/pi.2017.14.1.30
http://dx.doi.org/10.4306/pi.2017.14.1.30
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28096872&dopt=Abstract
http://dx.doi.org/10.1177/1352458507078388
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17623733&dopt=Abstract
http://dx.doi.org/10.1007/s00415-012-6624-1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22865238&dopt=Abstract
http://dx.doi.org/10.1016/j.mcna.2018.10.014
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30704685&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S0002-9297(11)00533-7
http://dx.doi.org/10.1016/j.ajhg.2011.11.029
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22243964&dopt=Abstract
http://dx.doi.org/10.1177/1745691611400237
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26162135&dopt=Abstract
http://dx.doi.org/10.1111/j.1745-6924.2009.01125.x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26158964&dopt=Abstract
http://dx.doi.org/10.1145/2020408.2020455
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/gix019
http://dx.doi.org/10.1093/gigascience/gix019
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28327985&dopt=Abstract
https://dx.plos.org/10.1371/journal.pbio.1002106
http://dx.doi.org/10.1371/journal.pbio.1002106
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25768323&dopt=Abstract
http://dx.doi.org/10.1080/00031305.2018.1447512
https://linkinghub.elsevier.com/retrieve/pii/S0895-4356(17)30721-7
http://dx.doi.org/10.1016/j.jclinepi.2017.07.014
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28842290&dopt=Abstract
https://trialsjournal.biomedcentral.com/articles/10.1186/s13063-018-2888-9
http://dx.doi.org/10.1186/s13063-018-2888-9
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30223876&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S0895-4356(17)30121-X
https://linkinghub.elsevier.com/retrieve/pii/S0895-4356(17)30121-X
http://dx.doi.org/10.1016/j.jclinepi.2017.05.007
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28529187&dopt=Abstract
https://europepmc.org/abstract/MED/24136126
http://dx.doi.org/10.1097/WCO.0000000000000026
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24136126&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses
ROBINS-E: Risk Of Bias In Nonrandomized Studies of Exposures

Edited by R Kukafka; submitted 03.03.22; peer-reviewed by C Guinemer, K Radhakrishnan, M Bardus; comments to author 09.06.22;
revised version received 18.07.22; accepted 11.10.22; published 21.11.22

Please cite as:
Guo CC, Chiesa PA, de Moor C, Fazeli MS, Schofield T, Hofer K, Belachew S, Scotland A
Digital Devices for Assessing Motor Functions in Mobility-Impaired and Healthy Populations: Systematic Literature Review
J Med Internet Res 2022;24(11):e37683
URL: https://www.jmir.org/2022/11/e37683
doi: 10.2196/37683
PMID:

©Christine C Guo, Patrizia Andrea Chiesa, Carl de Moor, Mir Sohail Fazeli, Thomas Schofield, Kimberly Hofer, Shibeshih
Belachew, Alf Scotland. Originally published in the Journal of Medical Internet Research (https://www.jmir.org), 21.11.2022.
This is an open-access article distributed under the terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work, first published in the Journal of Medical Internet Research, is properly cited. The complete bibliographic
information, a link to the original publication on https://www.jmir.org/, as well as this copyright and license information must
be included.

J Med Internet Res 2022 | vol. 24 | iss. 11 | e37683 | p. 22https://www.jmir.org/2022/11/e37683
(page number not for citation purposes)

Guo et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

https://www.jmir.org/2022/11/e37683
http://dx.doi.org/10.2196/37683
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

